Previous |  Up |  Next

Article

Title: A two-stage stochastic optimization model for a gas sale retailer (English)
Author: Maggioni, F.
Author: Vespucci, M. T.
Author: Allevi, E.
Author: Bertocchi, M. I.
Author: Innorta, M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 2
Year: 2008
Pages: 277-296
Summary lang: English
.
Category: math
.
Summary: The paper deals with a new stochastic optimization model, named OMoGaS–SV (Optimization Modelling for Gas Seller–Stochastic Version), to assist companies dealing with gas retail commercialization. Stochasticity is due to the dependence of consumptions on temperature uncertainty. Due to nonlinearities present in the objective function, the model can be classified as an NLP mixed integer model, with the profit function depending on the number of contracts with the final consumers, the typology of such consumers and the cost supported to meet the final demand. Constraints related to a maximum daily gas consumption, to yearly maximum and minimum consumption in order to avoid penalties and to consumption profiles are included. The results obtained by the stochastic version give clear indication of the amount of losses that may appear in the gas seller’s budget and are compared with the results obtained by the deterministic version (see Allevi et al. [ABIV]). (English)
Keyword: gas sale company
Keyword: mean reverting process
Keyword: stochastic programming
MSC: 46N10
MSC: 90B50
MSC: 90C15
idZBL: Zbl 1154.90517
idMR: MR2428224
.
Date available: 2009-09-24T20:34:06Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135848
.
Reference: [1] Alaton P., Djehiche, B., Stillberger D.: On modelling and pricing weather derivatives.Appl. Math. Finance 9 (2002), 1, 1–20 Zbl 1013.91036
Reference: [2] Allevi E., Bertocchi M. I., Innorta, M., Vespucci M. T.: A mixed integer nonlinear optimization model for gas sale company.Optim. Lett. 1 (2007), 1, 61–69 Zbl 1122.90107, MR 2357608
Reference: [3] Allevi E., Bertocchi M. I., Innorta, M., Vespucci M. T.: A stochastic optimization model for gas sales companies.IMA J. Management Math. (2007), 1–14
Reference: [4] Basawa I. V., Rao B. L. S. Prakasa: Statistical Inference for Stochastic Processes.Academic Press, London 1980 MR 0586053
Reference: [5] Bibby B. M., Sorensen M.: Martingale estimation functions for discretely observed diffusion processes.Bernoulli 1 (1995), 1/2, 17–39 MR 1354454
Reference: [6] Brockwell P. J., Davis R. A.: Time Series: Theory and Methods.Second edition. Springer, Berlin 1996 Zbl 1169.62074, MR 1093459
Reference: [7] Brooks R. E.: Using generalized networks to forecast natural gas distribution and allocation during periods of shortage.Math. Programming Stud. 15 (1981), 23–42
Reference: [8] Davidson J.: Econometric Theory.Blackwell Publishing, 2000 MR 1190175
Reference: [9] (2003), Deliberazione 138: Criteri per la determinazione delle condizioni economiche di fornitura del gas naturale ai clienti finali e disposizioni in materia di tariffe per l’attività di distribuzion.
Reference: [10] Dornier F., Queruel M.: Pricing weather derivatives by marginal value.Quantitative Finance 1, Institute of Physics Publishing 2000
Reference: [11] Eydeland A., Wolyniec K.: Energy and Power Risk Management.Wiley, New York 2003
Reference: [12] Ermoliev Y., Wets J.-B.: Numerical Techniques for Stochastic Optimization.Springer-Verlag, Berlin 1988 Zbl 0658.00020, MR 0957304
Reference: [13] Ruszczynski A., Shapiro A.: Stochastic Programming.Elsevier, Amsterdam 2003 Zbl 1183.90005, MR 2052755
.

Files

Files Size Format View
Kybernetika_44-2008-2_10.pdf 1.252Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo