Previous |  Up |  Next

Article

Title: Stability estimating in optimal stopping problem (English)
Author: Zaitseva, Elena
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 3
Year: 2008
Pages: 400-415
Summary lang: English
.
Category: math
.
Summary: We consider the optimal stopping problem for a discrete-time Markov process on a Borel state space $X$. It is supposed that an unknown transition probability $p(\cdot |x)$, $x\in X$, is approximated by the transition probability $\widetilde{p}(\cdot |x)$, $x\in X$, and the stopping rule $\widetilde{\tau }_*$, optimal for $\widetilde{p}$, is applied to the process governed by $p$. We found an upper bound for the difference between the total expected cost, resulting when applying $\widetilde{\tau }_*$, and the minimal total expected cost. The bound given is a constant times $\displaystyle \sup \nolimits _{x\in X}\Vert p(\cdot |x)-\widetilde{p}(\cdot |x)\Vert $, where $\Vert \cdot \Vert $ is the total variation norm. (English)
Keyword: discrete-time Markov process
Keyword: optimal stopping rule
Keyword: stability index
Keyword: total variation metric
Keyword: contractive operator
Keyword: optimal asset selling
MSC: 60G40
MSC: 60J10
idZBL: Zbl 1154.60326
idMR: MR2436040
.
Date available: 2009-09-24T20:35:40Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135859
.
Reference: [1] Allart P.: Optimal stopping rules for correlated random walks with a discount.J. Appl. Prob. 41 (2004), 483–496 MR 2052586
Reference: [2] Bertsekas D. P.: Dynamic Programming: Deterministic and Stochastic Models.Prentice Hall, Englewood Cliffs, N. J. 1987 Zbl 0649.93001, MR 0896902
Reference: [3] Bertsekas D. P., Shreve S. E.: Stochastic Optimal Control: The Discrete Time Case.Academic Press, New York 1979 Zbl 0633.93001, MR 0511544
Reference: [4] Dijk N. M. Van: Perturbation theory for unbounded Markov reward process with applications to queueing systems.Adv. in Appl. Probab. 20 (1988), 99–111 MR 0932536
Reference: [5] Dijk N. M. Van, Sladký K.: Error bounds for nonnegative dynamic models.J. Optim. Theory Appl. 101 (1999), 449–474 MR 1684679
Reference: [6] Dynkin E. B., Yushkevich A. A.: Controlled Markov Process.Springer-Verlag, New York 1979 MR 0554083
Reference: [7] Favero G., Runggaldier W. J.: A robustness results for stochastic control.Systems Control Lett. 46 (2002), 91–97 MR 2010062
Reference: [8] Gordienko E. I.: An estimate of the stability of optimal control of certain stochastic and deterministic systems.J. Soviet Math. 59 (1992), 891–899. (Translated from the Russian publication of 1989) MR 1163393
Reference: [9] Gordienko E. I., Salem F. S.: Robustness inequality for Markov control process with unbounded costs.Systems Control Lett. 33 (1998), 125–130 MR 1607814
Reference: [10] Gordienko E. I., Yushkevich A. A.: Stability estimates in the problem of average optimal switching of a Markov chain.Math. Methods Oper. Res. 57 (2003), 345–365 Zbl 1116.90401, MR 1990916
Reference: [11] Gordienko E. I., Lemus-Rodríguez E., Montes-de-Oca R.: Discounted cost optimality problem: stability with respect to weak metrics.In press in: Math. Methhods Oper. Res. (2008) Zbl 1166.60041, MR 2429561
Reference: [12] Hernández-Lerma O., Lassere J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria.Springer-Verlag, N.Y. 1996
Reference: [13] Jensen U.: An optimal stopping problem in risk theory.Scand. Actuarial J.2 (1997), 149–159 Zbl 0888.62104, MR 1492423
Reference: [14] Meyn S. P., Tweedie R. L.: Markov Chains and Stochastic Stability.Springer-Verlag, London 1993 Zbl 1165.60001, MR 1287609
Reference: [15] Montes-de-Oca R., Salem-Silva F.: Estimates for perturbations of an average Markov decision process with a minimal state and upper bounded by stochastically ordered Markov chains.Kybernetika 41 (2005), 757–772 MR 2193864
Reference: [16] Montes-de-Oca R., Sakhanenko, A., Salem-Silva F.: Estimate for perturbations of general discounted Markov control chains.Appl. Math. 30 (2003), 287–304 MR 2029538
Reference: [17] Muciek B. K.: Optimal stopping of a risk process: model with interest rates.J. Appl. Prob. 39 (2002), 261–270 Zbl 1011.62111, MR 1908943
Reference: [18] Müller A.: How does the value function of a Markov decision process depend on the transition probabilities? Math.Oper. Res. 22 (1997), 872–885 MR 1484687
Reference: [19] Schäl M.: Conditions for optimality in dynamic programming and for the limit of $n$-stage optimal policies to be optimal.Z. Wahrsch. verw. Gebiete 32 (1975), 179–196 Zbl 0316.90080, MR 0378841
Reference: [20] Shiryaev A. N.: Optimal Stopping Rules.Springer-Verlag, New York 1978 Zbl 1138.60008, MR 2374974
Reference: [21] Shiryaev A. N.: Essential of Stochastic Finance.Facts, Models, Theory. World Scientific Publishing Co., Inc., River Edge, N.J. 1999 MR 1695318
.

Files

Files Size Format View
Kybernetika_44-2008-3_10.pdf 902.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo