Previous |  Up |  Next

Article

Title: The existence of states on every Archimedean atomic lattice effect algebra with at most five blocks (English)
Author: Riečanová, Zdenka
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 3
Year: 2008
Pages: 430-440
Summary lang: English
.
Category: math
.
Summary: Effect algebras are very natural logical structures as carriers of probabilities and states. They were introduced for modeling of sets of propositions, properties, questions, or events with fuzziness, uncertainty or unsharpness. Nevertheless, there are effect algebras without any state, and questions about the existence (for non-modular) are still unanswered. We show that every Archimedean atomic lattice effect algebra with at most five blocks (maximal MV-subalgebras) has at least one state, which can be obtained by “State Smearing Theorem” from a state on its sharp elements. (English)
Keyword: non-classical logics
Keyword: effect algebras
Keyword: MV-algebras
Keyword: blocks
Keyword: states
MSC: 03G12
MSC: 03G25
MSC: 06D35
MSC: 06F25
MSC: 06F35
MSC: 81P10
idZBL: Zbl 1154.06301
idMR: MR2436042
.
Date available: 2009-09-24T20:36:00Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135861
.
Reference: [1] Beltrametti E. G., Cassinelli G.: The Logic of Quantum Mechanics.Addison-Wesley, Reading, MA 1981 Zbl 0595.03062, MR 0635780
Reference: [2] Benett M. K., Foulis D. J.: Interval and scale effect algebras.Advan. Math. 19 (1997), 200–215 MR 1459498
Reference: [3] Bruns G.: Block-finite orthomodular lattices.Canad. J. Math. 31 (1979), 961–985 Zbl 0429.06002, MR 0546951
Reference: [4] Chang C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302
Reference: [5] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346 MR 1304942
Reference: [6] Gudder S. P.: Sharply dominating effect algebras.Tatra Mt. Math. Publ. 15 (1998), 23–30 Zbl 0939.03073, MR 1655076
Reference: [7] Gudder S. P.: S-dominating effect algebras.Internat. J. Theoret. Phys. 37 (1998), 915–923 Zbl 0932.03072, MR 1624277
Reference: [8] Höhle U., (eds.) E. P. Klement: Non-Classical Logics and their Applications to Fuzzy Subsets, Vol.32. Kluwer Academic Publishers, Dordrecht 1998 MR 1345637
Reference: [9] Jenča G., Riečanová Z.: On sharp elements in lattice ordered effect algebras.BUSEFAL 80 (1999), 24–29
Reference: [10] Kalmbach G.: Orthomodular Lattices.Academic Press, London – New York 1983 Zbl 0554.06009, MR 0716496
Reference: [11] Kôpka F.: Compatibility in D-posets.Internat. J. Theor. Phys. 34 (1995), 1525–1531 Zbl 0851.03020, MR 1353696
Reference: [12] Mosná K.: Atomic lattice effect algebras and their sub-lattice effect algebras.J. Electrical Engrg. (Special Issue) 58 (2007), 3–6
Reference: [13] Pulmannová S., Riečanová Z.: Block finite atomic orthomodular lattices.J. Pure Appl. Algebra 89 (1993), 295–304 Zbl 0786.06007
Reference: [14] Riečanová Z.: Archimedean and block-finite lattice effect algebras.Demonstratio Math. 33 (2000), 443–452 MR 1791464
Reference: [15] Riečanová Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras.Internat. J. Theoret. Phys. 39 (2000), 231–237 MR 1762594
Reference: [16] Riečanová Z.: Proper effect algebras admitting no states.Internat. J. Theoret. Phys. 40 (2001), 1683–1691 Zbl 0989.81003, MR 1858217
Reference: [17] Riečanová Z.: Smearings of states defined on sharp elements onto effect algebras.Internat. J. Theoret. Phys. 41 (2002), 1511–1524 MR 1932844
Reference: [18] Riečanová Z.: Continuous lattice effect algebras admitting order-continuous states.Fuzzy Sets and Systems 136 (2003), 41–54 MR 1978468
Reference: [19] Riečanová Z.: Basic decomposition of elements and Jauch–Piron effect algebras.Fuzzy Sets and Systems 155 (2005), 138–149 MR 2206659
.

Files

Files Size Format View
Kybernetika_44-2008-3_12.pdf 721.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo