Previous |  Up |  Next

Article

Title: On-off intermittency in continuum systems driven by the Chen system (English)
Author: Zhou, Qian
Author: Chen, Zeng-Qiang
Author: Yuan, Zhu-Zhi
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 4
Year: 2008
Pages: 469-481
Summary lang: English
.
Category: math
.
Summary: Previous studies on on-off intermittency in continuum systems are generally based on the synchronization of identical chaotic oscillators or in nonlinear systems driven by the Duffing oscillator. In this paper, one-state on-off intermittency and two-state on-off intermittency are observed in two five- dimensional continuum systems, respectively, where each system has a two- dimensional subsystem driven by the chaotic Chen system. The phenomenon of intermingled basins is observed below the blowout bifurcation. Basic statistical properties of the intermittency are investigated. It is shown that the distribution of the laminar phase follows a -3/2 power law, and that of the burst amplitudes follows a -1 power law, consistent with the basic statistical characteristics of on-off intermittency. (English)
Keyword: on-off intermittency
Keyword: Chen system
Keyword: Blowout bifurcation
Keyword: intermingled basin
Keyword: power law
MSC: 37C70
MSC: 93C10
idZBL: Zbl 1178.37027
idMR: MR2459065
.
Date available: 2009-09-24T20:36:44Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135866
.
Reference: [1] Ashwin P., Covas, E., Tavakol R.: Transverse instability for non-normal parameters.Nonlinearity 12 (1999), 563–577 Zbl 0984.37053, MR 1690194
Reference: [2] Bickel D. R.: Estimating the intermittency of point processes with applications to human activity and viral DNA.Phys. A 265 (1999), 634–648
Reference: [3] Cabrera J. L., Milton J. G.: On-off intermittency in a human balancing task.Phys. Rev. Lett. 89 (2002), 1587021–1587024
Reference: [4] Velho H. F. Campos, Rosa R. R., Ramos F. M., Sr R. A. Pielke, Degrazia G. A.: Representing intermittency in turbulent fluxes: An application to the stable atmospheric boundary layer.Phys. A 354 (2005), 88–94
Reference: [5] Cenys A., Anagnostopoulos A. N., Bleris G. L.: Symmetry between laminar and burst phases for on-off intermittency.Phys. Rev. E 56 (1997), 2592–2596
Reference: [6] Chen G., Ueta T.: Yet another chaotic attractor.Internat. J. Bifur. Chaos 9 (1999), 1465-1466 Zbl 0962.37013, MR 1729683
Reference: [7] Grebogi C., Ott E., Romeiras, F., Yorke J. A.: Critical exponents for crisis induced intermittency.Phys. Rev. A 36 (1987), 5365–5379 MR 0919537
Reference: [8] Harnos A., Horváth G., Lawrence A. B., Vattay G.: Scaling and intermittency in animal behavior.Phys. A 286 (2000), 312–320
Reference: [9] Heagy J. F., Platt, N., Hammel S. M.: Characterization of on-off.Intermittency. Phys. Rev. E 49 (1994), 1140–1150
Reference: [10] Hramov A. E., Koronovskii A. A., Midzyanovskaya I. S., Sitnikova, E., Rijn C. M. van: On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy.Chaos 16 (2006), 0431111–0431117
Reference: [11] Kim C.-M.: Mechanism of chaos synchronization and on-off intermittency.Phys. Rev. E 56 (1997), 3697–3700
Reference: [12] Lai Y.-C., Grebogi C.: Intermingled basins and two-state on-off intermittency.Phys. Rev. E 52 (1995), 3313–3316
Reference: [13] Lippiello E., Arcangelis, L. de, Godano C.: On-off intermittency in mean-field earthquake model.Europhys. Lett. 76 (2006), 979–985
Reference: [14] Núñez M.: Rigorous bounds on intermittent bursts for turbulent flows.Phys. D 176 (2003), 237–241 Zbl 1036.76022, MR 1965379
Reference: [15] Ott E., Sommerer J. C.: Blowout bifurcations: The occurrence of riddled basins.Phys. Lett. A 188 (1994), 39–47
Reference: [16] Platt N., Hammel S. M., Heagy J. F.: Effects of additive noise on on-off intermittency.Phys. Rev. Lett. 72 (1994), 3498–3501
Reference: [17] Platt N., Spiegel E. A., Tresser C.: On-off Intermittency: A mechanism for bursting.Phys. Rev. Lett. 70 (1993), 279–282
Reference: [18] Pomeau Y., Manneville P.: Intermittent transition to turbulence in dissipative dynamical systems.Comm. Math. Phys. 74 (1980), 189–197 MR 0576270
Reference: [19] Stefański A., Kapitaniak T., Brindley, J., Astakhov V.: Torus on-off intermittency in coupled Lorenz systems.Phys. Rev. E 57 (1998), 1175–1177
Reference: [20] Toniolo C., Provenzale, A., Spiegel E. A.: Signature of on-off intermittency in measured signals.Phys. Rev. E 66 (2002), 066209
Reference: [21] Venkataramani S. C., Jr. T. M. Antonsen, Ott, E., Sommerer J. C.: On-off fractal properties of time series.Phys. D 96 (1994), 66–99
Reference: [22] Zhan M., Hu, G., Yang J. Z.: Synchronization of chaos in coupled systems.Phys. Rev. E 62 (2000), 2963–2966
.

Files

Files Size Format View
Kybernetika_44-2008-4_3.pdf 4.593Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo