Full entry |
PDF
(0.7 MB)
Feedback

phase-space reconstruction; embedding window; delay time; time series

References:

[1] Grassberger P., Procaccia I.: **Measure the strangeness of strange attractors**. Physica D 9 (1983), 189–208 MR 0732572

[2] Huang R. S.: **Chaos and Application**. Wuhan University Press, Wuhan 2000

[3] Kim H. S., Eykholt, R., Salas J. D.: **Nonlinear dynamics, delay times, and embedding windows**. Physica D 127 (1999), 48–60 Zbl 0941.37054

[4] Lu J. H., Lu J. A., Chen S. H.: **Analysis and Application of Chaotic Time Series**. Wuhan University Press, Wuhan 2002

[6] Ma H. G., Li X. H., Wang G. H.: **Selection of embedding dimension and delay time in phase space reconstruction**. J. Xi’an Jiaotong University 38 (2004), 335–338

[7] Small M., Tse C. K.: **Optimal embedding parameters: A modeling paradigm**. Physica D: Nonlinear Phenomena 194 (2004), 283–296 MR 2075657

[9] Sauer T., Yorke J. A., Casdagli M.: **Embedology**. J. Statist. Phys. 65 (1991), 579–616 MR 1137425 | Zbl 0943.37506

[10] Takens F.: **Detecting Strange Attractors in Turbulence**. Dynamical Systems and Turbulence. (Lecture Notes in Mathematics 898.) Springer-Verlag, Berlin 1981, pp. 366–381 MR 0654900 | Zbl 0513.58032

[11] Takens F.: **On the Numerical Determination of the Dimension of an Attractor**. Dynamical System and Turbulence. (Lecture Notes in Mathematics 1125.) Springer-Verlag, Berlin 1985, pp. 99–106 MR 0798084 | Zbl 0561.58027

[12] Wang Y., Xu W.: **The methods and performance of phase space reconstruction for the time series in Lorenz system**. J. Vibration Engrg. 19 (2006), 277–282

[13] Xiu C. B., Liu X. D., Zhang Y. H.: **Selection of embedding dimension and delay time in the phase space reconstruction**. Trans. Beijing Institute of Technology 23 (2003), 219–224

[14] Zhang Y., Ren C. L.: **The methods to confirm the dimension of re-constructed phase space**. J. National University of Defense Technology 27 (2005), 101–105