Previous |  Up |  Next

Article

Title: A note on hyperbolic partial differential equations. II. (English)
Author: Rzepecki, Bogdan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 31
Issue: 4
Year: 1981
Pages: 355-364
.
Category: math
.
MSC: 35A35
MSC: 35L10
idZBL: Zbl 0571.35065
idMR: MR637964
.
Date available: 2009-09-25T09:16:26Z
Last updated: 2012-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/136276
.
Related article: http://dml.cz/handle/10338.dmlcz/132406
.
Reference: [1] BIELECKI A. : Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la theorie des équations différentielles ordinaires.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4, 1956, 261-264. MR 0082073
Reference: [2] BIELECKI A. : Une remarque sur l'application de la méthode de Banach-Cacciopoli-Tikhonov dans la theorie de l'équation s=f(x, y, z, p, q).Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4, 1956, 265-268. MR 0082074
Reference: [3] ĎURIKOVlČ V. : On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem for certain differential equations of the type uxy = f(x, y, u, ux, uy).Spisy přírodov. fak. Univ. J. E. Purkyně v Brně 4, 1968, 223-236.
Reference: [4] ĎURIKOVlČ V. : On the existence and uniqueness of solutions and on the convergence of successive aproximations in the Darboux problem for certain differential equations of the type $u_{x_1\cdots x_n}=f(x_1,\cdots,x_n,u,\cdots,u_{x_{l_1}\cdots x_{l_j}},\cdots)$.Čas. pro pěstov. mat. 95, 1970, 178-195 MR 0450758
Reference: [5] ĎURIKOVlČ V. : The convergence of successive approximations for boundary value problems of hyperbolic equations in the Banach space.Mat. Časop. 21, 1971, 33-54. MR 0355387
Reference: [6] GAJEWSKI H., GROGER K., ZACHARIAS K. : Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412
Reference: [7] KOOI O. : Existentie-, einduidigheids- en convergence stellingen in de theore der gewone differential vergelijkingen.Thesis V. U., Amsterdam, 1956.
Reference: [8] KOOI O. : The method of successive approximations and a uniqueness theorem of Krasnoselskii and Krein in the theory of differential equations.Indag. Math. 20, 1958, 322-327. MR 0098859
Reference: [9] KRASNOSELSKII M. A. : Two remarks on the method of successive approximations.Uspehi Mat. Nauk 10, 1955, 123-127 [in Russian]. MR 0068119
Reference: [10] KRASNOSELSKII M. A., KREIN S. G. : On a class of uniqueness theorems for the equation y'=f(t,y).Uspehi Mat. Nauk 11, 1956, 206-213 [in Russian]. MR 0079152
Reference: [11] KRATOWSKI C. : Topologie. V. I.Warszawa, 1952.
Reference: [12] LUXEMBURG W. A. J. : On the convergence of successive approximations in the theory of ordinary differential equations II.Indag. Math. 20, 1958, 540-546. Zbl 0084.07703, MR 0124554
Reference: [13] LUXEMBURG W. A. J. : On the convergence of successive approximations in the theory of ordinary differential equations III.Nieuw Archief Voor Wiskunde 6, 1958, 93-98. Zbl 0085.30201, MR 0124555
Reference: [14] PALCZEWSKI B., PAWELSKI W. : Some remarks on the uniqueness of solutions of the Darboux problem with conditions of the Krasnosielski-Krein type.Ann. Polon. Math. 14, 1964, 97-100. Zbl 0132.07208, MR 0161013
Reference: [15] ROSENBLATT A. : Über die Existenz von Integralen gewöhnlichen Differentialglechungen.Archiv for Mathem. Astr. och Fysik 5 (2), 1909, 1-4.
Reference: [16] RZEPECKI B. : A generalization of Banach's contraction theorem.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26, 1978, 603-609. Zbl 0421.47032, MR 0515618
Reference: [17] RZEPECKI B. : Note on the differential equation F(f, y(t), y(h(t)), y'(t)) = 0.Comment. Math. Univ. Carolinae 19, 1978, 627-637. MR 0518176
Reference: [18] RZEPECKI B. : Note on hyperbolic partial differential equations I.Mathematica Slovaca 31, 1981, 243-250. MR 0621915
Reference: [19] WONG J. S. W. : On the convergence of successive approximations in the Darboux problem.Ann. Polon. Math. 17, 1966, 329-336. Zbl 0144.13704, MR 0188579
.

Files

Files Size Format View
MathSlov_31-1981-4_4.pdf 625.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo