[1] AKIYAMA J., EXOO G., HARARY F.: 
The graphs with all induced subgraphs isomorphic. Bull Malaysian Math. Soc. (2) 2, 1979, 43-44. 
MR 0545802 | 
Zbl 0406.05058[2] BOSÁK J.: Induced subgraphs. In: Proceedings of the Sixth Hungarium Colloquium on Combinatorics (Eger 1981), sumbitted.
[3] HARARY F., PALMER E.: 
A note on similar points and similar lines of a graph. Rex. Roum. Math. Pures et Appl. 10, 1965, 1489-1492. 
MR 0197346 | 
Zbl 0141.21403[5] KIMBLE R. J., SCHWENK A. J., STOCKMEYER P. K.: 
Pseudosimilar vertices in a graph. J. Graph Theory 5, 1981, 171-181. 
MR 0615005[7] KRISHNAMOORTHY V., PARTHASARATHY K. R.: 
Cospectral graphs and digraphs with given automorphism group. J. Combinatorial Theory B 19, 1975, 204-213. 
MR 0398884 | 
Zbl 0285.05108[8] MANVEL B., REYNER S. W.: 
Subgraph-equivalence of graphs. J. Combinatorics Information Syst. Sci. 1, 1976, 41-47. 
MR 0505871 | 
Zbl 0402.05056[10] RUIZ S.: 
Problem. In: Combinatorics 79, part II. Ann. Discrete Math. 9. North-Holland, Amsterdam 1980, 308. 
MR 0597383[11] SCHWENK A. J.: 
Removal-cospectral sets of vertices in a graph. In: Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium 24. Utilitas Math. Publ. Co., Winnipeg, Manitoba 1979, Voll. II, 849-860. 
MR 0561102 | 
Zbl 0422.05035[12] ŠIRÁŇ J.: 
On graphs containing many subgraphs with the same number of edges. Math. Slovaca 30, 1980, 267-268. 
MR 0587253 | 
Zbl 0436.05056[13] YAP H. P.: 
On graphs whose edge-deleted subgraphs have at most two orbits. Ars Combinatoria 10, 1980, 27-30. 
MR 0598896 | 
Zbl 0457.05049[14] YAP H. P.: 
On graphs whose maximal subgraphs have at most two orbits. Discrete Math., to appear. 
MR 0676432 | 
Zbl 0472.05032[15] ZASLAVSKY T.: 
Uniform distribution of a subgraph in a graph. In: Proc. Colloq. Internat. sur la Théorie des Garphes at la Combinatoire (Marseille-Luminy 1981), to appear. 
MR 0841354