| Title: | Typical continuous function without cycles is stable (English) | 
| Author: | Neubrunnová, Katarína | 
| Language: | English | 
| Journal: | Mathematica Slovaca | 
| ISSN: | 0139-9918 | 
| Volume: | 35 | 
| Issue: | 2 | 
| Year: | 1985 | 
| Pages: | 123-126 | 
| . | 
| Category: | math | 
| . | 
| MSC: | 26A18 | 
| MSC: | 54H20 | 
| idZBL: | Zbl 0582.54026 | 
| idMR: | MR795005 | 
| . | 
| Date available: | 2009-09-25T09:44:15Z | 
| Last updated: | 2012-08-01 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/136382 | 
| . | 
| Reference: | [1] BLOCK L.: Stability of periodic oгbits in the theorem of Šarkovskii.Pгoc. Ameг. Math. Soc. 81, 1981, 333-336. MR 0593484 | 
| Reference: | [2] COVEN E. M., HEDLUND G. A.: Continuous maps of the inteгval whose peгiodic points foгm a closed set.Pгoc. Amer. Math. Soc. 79, 1980, 127-133. MR 0560598 | 
| Reference: | [З] KLOEDEN P.: Chaotic difference equations are dense.Bull. Austr. Math. Soc. 15, 1976, 371-379. Zbl 0335.39001, MR 0432829 | 
| Reference: | [4] LI T. Y., YORKE J. A.: Period three implies chaos.Amer. Math. Monthly 82, 1 975, 985-992. Zbl 0351.92021, MR 0385028 | 
| Reference: | [5] MAY R. M.: Sirnple mathematical models with very complicated dynamics.Nature 261, 1976, 459-467. | 
| Reference: | [6] SMÍTAL J., SMÍTALOVÁ K.: Structural stability of typical nonchaotic difference equations.Journ. Math. Anal. and Appl. 90, 1982, 1-11. MR 0680860 | 
| Reference: | [7] SMÍTAL J., NEUBRUNNOVÁ K.: Stability of typical continuous functions with respect to some properties of their iterates.Proc. Amer. Math. Soc. to appear. Zbl 0529.54038, MR 0727258 | 
| Reference: | [8] ШAPKOBCKИЙ A. H.: Cocyщecтвoвaниe циклoв нeпpepывнoгo npeoбpaзoвaния npямoй в ceбя.Укpaин. Maт. Жypнaл 16, 1964, 61-71. | 
| Reference: | [9] ШAPKOBCKИЙ A. H.: O циклax и cтpyктype нeпpepывнoгo oтoбpaжeния.Укpaин. Maт. Жypнaл 17, 1965, 104-111. MR 0186757 | 
| . |