Previous |  Up |  Next

Article

Title: Congruence relations on and varieties of directed multilattices (English)
Author: Lihová, Judita
Author: Repaský, Karol
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 38
Issue: 2
Year: 1988
Pages: 105-122
.
Category: math
.
MSC: 06B10
MSC: 06B20
idZBL: Zbl 0642.06003
idMR: MR945364
.
Date available: 2009-09-25T10:07:28Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136466
.
Reference: [1] BENADO M.: Les ensembles partiellement ordonnés et le théorème de raffinement de Schreier II.Czech. Math. J. 5, 1955, 308-344. Zbl 0068.25902, MR 0076744
Reference: [2] BENADO M.: Bemerkungen zur Theorie der Vielverbände I, II, III.Math. Nachr. 20, 1959, 1-16. MR 0109131
Reference: [3] BENADO M.: Bemerkungen zur Theorie der Vielverbände IV.Proc. Camb. Phil. Soc. 56, 1960, 291-317. Zbl 0201.34302, MR 0120172
Reference: [4] BENADO M.: Teorija muľtirešotok i jejo značenie v algebre i geometriji.Acta Fac. Rerum Nat. Univ. Comenianae, Math. V, 1961, 431-448. MR 0131376
Reference: [5] CRAWLEY P., DILWORTH R. P.: Algebraic Theory of Lattices.Prentice-Hall, Inc., Engelwood Cliffs - New Jersey 1973. Zbl 0494.06001
Reference: [6] DUBREIL-JACOTIN M. L., CROISOT R.: Équivalences régulières dans un ensemble ordonné.Bull. Soc. Math. 80, 1952, 11-35. Zbl 0047.05502, MR 0051812
Reference: [7] GRÄTZER G.: General Lattice Theory.Akademie-Verlag, Berlin 1978. MR 0504338
Reference: [8] GRÄTZER G., LAKSER H.: Extension theorems on congruences of partial lattices.Not. Amer. Math. Soc. 15, 1968, 732, 785.
Reference: [9] GRÄTZER G., SCHMIDT E. T.: Ideals and congruence relations in lattices.Acta Math. Sci. Hungar. 9, 1958, 137-175. Zbl 0085.02002, MR 0100560
Reference: [10] GRÄTZER G., SCHMIDT E. T.: On congruence lattices of lattices.Acta Math. Acad. Sci. Hungar. 13, 1962, 179-185. Zbl 0101.02103, MR 0139551
Reference: [11] HANSEN D. J.: An axiomatic characterization of multilattices.Discrete Math. 33, 1981, 99-101. Zbl 0447.06005, MR 0597233
Reference: [12] JAKUBÍK J.: Sur les axiomes des multistructures.Czech. Math. J. 6, 1956, 426-430. Zbl 0075.01901, MR 0099933
Reference: [13] JAKUBÍK J.: Sur ľisomorphisme des graphes des multistructures.Acta Fac. Rerum Nat. Univ. Comenianae, Math. I, 1956, 255-264. MR 0096597
Reference: [14] KLAUČOVÁ O.: Pairs of multilattices defined on the same set.Math. Slovaca 30, 1980, 181-186. Zbl 0435.06007, MR 0587244
Reference: [15] MAEDA F.: Kontinuierliche Geometrien.Springer-Verlag, Berlin 1958. MR 0090579
Reference: [16] McALISTER D. B.: On multilattice groups.Proc. Camb. Phil. Soc. 61, 1965, 621-638. Zbl 0135.06203, MR 0175819
Reference: [17] McALISTER D. B.: On multilattice groups II.Proc. Camb. Phil. Soc. 62, 1966, 149-164. Zbl 0138.02702, MR 0190241
Reference: [18] PICKETT H. E.: Homomorphisms and subalgebras of multialgebras.Pac. J. of Math. 21, 1967, 327-342. Zbl 0149.26101, MR 0213278
Reference: [19] SCHMIDT E. T.: Zur Charakterisierung der Kongruenzverbände der Verbände.Mat. časopis SAV 18, 1968, 3-20. MR 0241335
Reference: [20] SCHMIDT E. T.: Kongruenzrelationen algebraischer Structuren.VEB Deutscher Verlag der Wissenschaften, Berlin 1969. MR 0255474
Reference: [21] SCHMIDT E. T.: Every finite distributive lattice is the congruence lattice of some modular lattice.Algebra Univeгsalis 4, 1974, 49-57. Zbl 0298.06013, MR 0364041
Reference: [22] SCHWEIGERT D.: Congruence relations of multialgebras.Discrete Math. 53, 1985, 249-253. Zbl 0554.08001, MR 0786493
Reference: [23] TOMKOVÁ M.: On the b-equivalence of multilattices.Math. Slovaca 27, 1977, 331-336. Zbl 0369.06005, MR 0536836
Reference: [24] TOMKOVÁ M.: Graph isomorphisms of modular multilattices.Math. Slovaca 30, 1980, 95-100. Zbl 0435.06008, MR 0568218
.

Files

Files Size Format View
MathSlov_38-1988-2_3.pdf 902.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo