[1] BARNA B.: 
Über die Iteration reeller Funktionen I. Publ. Math. Debreczen, 7, 1960, 16- 40. 
MR 0131505 | 
Zbl 0112.04301[2] BLOCK L.: 
Homoclinic points of mappings of the interval. Proc Amer. Math. Soc., 72, 1978, 576-580. 
MR 0509258 | 
Zbl 0365.58015[3] JANKOVÁ K., SMÍTAL J.: 
A characterization of chaos. Bull. Austral. Math. Soc., 34, 1986, 283-292. 
MR 0854575 | 
Zbl 0577.54041[4] MISIUREWICZ M.: 
Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. Sér. Math., 27, 1979, 167-169. 
MR 0542778 | 
Zbl 0459.54031[5] MISIUREWICZ M., SMÍTAL J.: 
Smooth chaotic maps with zero topological entropy. Ergodic Th. & Dynam. Systems, to appear. 
MR 0961740 | 
Zbl 0689.58028[6] PREISS D., SMÍTAL J.: 
A characterization of non-chaotic maps of the interval stable under small perturbations. Trans. Amer. Math. Soc., to appear. 
MR 0997677[7] ŠARKOVSKII A. N.: 
On cycles and the structure of continuous mappings. (Russian.) Ukrain. Mat. Ž., 17, No 3, 1965, 104-111. 
MR 0186757[8] ŠARKOVSKII A. N.: 
The behavior of a map in a neighborhood of an attracting set. (Russian.) Ukrain. Mat. Ž., 18, No 2, 1966, 60-83. 
MR 0212784[9] ŠARKOVSKII A. N.: Ona problem of isomorphism of dynamical systems. (Russian.) Proc. Internat. Conference on Nonlinear Oscillations, Vol. 2, Kiev 1970, 541-545.
[10] SMÍTAL J.: 
Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297, 1986, 269-282. 
MR 0849479 | 
Zbl 0639.54029