Previous |  Up |  Next

Article

Title: Buck's measure density and sets of positive integers containing arithmetic progression (English)
Author: Paštéka, Milan
Author: Šalát, Tibor
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 41
Issue: 3
Year: 1991
Pages: 283-293
.
Category: math
.
MSC: 11B05
MSC: 11B83
MSC: 28E99
idZBL: Zbl 0761.11004
idMR: MR1126665
.
Date available: 2009-09-25T10:32:17Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136532
.
Reference: [1] BUCK R. C.: The measure theoretic approach to density.Amer. J. Math. LXVIII (1946), 560-580. Zbl 0061.07503, MR 0018196
Reference: [2] DINCULEANU N.: Vector Measures.VEB Deutscher Verlag der Wissen, Berlin, 1966 Zbl 0647.60062, MR 0206189
Reference: [3] ERDÖS P., NATHANSON M. B., SÁRKÖZY A.: Sumsets containing infinite arithmetic progressions.J. Number Theory 28 (1988), 159-166. Zbl 0633.10047, MR 0927657
Reference: [4] HARDY G. H., WRIGHT E. M.: An Introduction to the Theory of Numbers.3rd ed., Oxford, 1954. Zbl 0058.03301, MR 0067125
Reference: [5] MAHARAM D.: Finitely additive measures on the integers.Sankhya: The Indian J, Stat. Ser. A 38 (1976), 44-59. Zbl 0383.60008, MR 0473132
Reference: [6] PAŠTÉKA M.: Some properties of Buck's measure density.(To appear.). Zbl 0761.11003
Reference: [7] SIERPIŃSKI W.: Elementary Theory of Numbers.PWN, Warszawa, 1964. Zbl 0122.04402, MR 0175840
Reference: [8] SIKORSKI R.: Funkcje rzeczywiste I.PWN, Warszawa, 1958. MR 0105468
Reference: [9] SZEMEREDI E.: On sets of integers containing no k elements in arithmetic progression.Acta Arithm. 27 (1975), 199-245. MR 0369312
.

Files

Files Size Format View
MathSlov_41-1991-3_8.pdf 677.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo