Title:
|
Some bases of the Stickelberger ideal (English) |
Author:
|
Skula, Ladislav |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
43 |
Issue:
|
5 |
Year:
|
1993 |
Pages:
|
541-571 |
. |
Category:
|
math |
. |
MSC:
|
11R18 |
idZBL:
|
Zbl 0798.11044 |
idMR:
|
MR1273710 |
. |
Date available:
|
2009-09-25T10:51:55Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/136590 |
. |
Reference:
|
[1] AGOH T.: On Fermat's last theorem.C.R. Math. Rep. Acad. Sci. Canada VII (1990), 11-15. Zbl 0703.11015, MR 1043087 |
Reference:
|
[2] BENNETON G.: Sur le dernier théorème de Fermat.Ann. Sci. Univ. Besançon Math. 3 (1974), 15pp. Zbl 0348.10010, MR 0419347 |
Reference:
|
[3] FUETER R.: Kummers Kriterium zum letzten Theorem von Fermat.Math. Ann. 85 (1922), 11-20. MR 1512040 |
Reference:
|
[4] GRANVILLE A. J.: Diophantine Equations with Varying Exponents (with Special Reference to Fermat's Last Theorem).Ph. D. thesis, Queen's University, 1987. |
Reference:
|
[5] IWASAWA K.: A class number formula for cyclotomic fields.Ann. of Math. 76 (1962), 171-179. Zbl 0125.02003, MR 0154862 |
Reference:
|
[6] KUČERA R.: On bases of the Stickelberger ideal and of the group of circular units of a cyclotomic fields.J. Number Theory 40 (1992), 284-316. MR 1154041 |
Reference:
|
[7] KUMMER E. E.: Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren.J. Reine Angew. Math. 35 (1847), 327-367, (Coll. Papers I, 211-251). |
Reference:
|
[8] KUMMER E. E.: Einige Sëtze über die aus den Wurzeln der Gleichung αλ = 1 gebildeten complexen Zahlen, für den Fall, daß die Klassenanzahl durch λ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat'schen Lehrsatzes.Abh. Königl. Akad. Wiss., Berlin (1857), 41-74, (Coll. Papers I, 639-692). |
Reference:
|
[9] LERCH M.: Zur Theorie des Fermatschen Quotienten (a p-1 - 1)/p = q(a).Math. Ann. 60 (1905), 471-490. MR 1511321 |
Reference:
|
[10] LE LIDEC P.: Sur une forme nouvelle des congruences de Kummer-Mirimanoff.C.R. Acad. Sci. Paris Sér. A 265 (1967), 89-90. Zbl 0154.29602, MR 0217013 |
Reference:
|
[11] LE LIDEC P.: Nouvelle forme des congruences de Kummer-Mirimanoff pour le premier cas du théorème de Fermat.Bull. Soc. Math. France 97 (1969), 321-328. Zbl 0188.10102, MR 0262158 |
Reference:
|
[12] NEWMAN M.: A table of the first factor for prime cyclotomic fields.Math. Comp. 24(109) (1970), 215-219. MR 0257029 |
Reference:
|
[13] SINNOTT W.: On the Stickelberger ideal and the circular units of a cyclotomic field.Ann. of Math. 108 (1978), 107-134. Zbl 0395.12014, MR 0485778 |
Reference:
|
[14] SINNOTT W.: On the Stickelberger ideal and the circular units of an abelian field.In: Invent. Math. 62, Springer, Berlin-New York, 1980, pp. 181-234. Zbl 0465.12001, MR 0595586 |
Reference:
|
[15] SKULA L.: Index of irregularity of a prime.J. Reine Angew. Math. 315 (1980), 92-106. Zbl 0419.10016, MR 0564526 |
Reference:
|
[16] SKULA L.: Another proof of Iwasawa's class number formula.Acta Arith. XXXIX (1981), 1-6. Zbl 0372.12012, MR 0638737 |
Reference:
|
[17] SKULA L.: A remark on Mirimanoff polynomials.Comment. Math. Univ. St. Paul. 31 (1982), 89-97. Zbl 0496.10006, MR 0674586 |
Reference:
|
[18] SKULA L.: Systems of equations depending on certain ideals.Arch. Math. (Brno) 21 (1985), 23-38. Zbl 0589.12005, MR 0818304 |
Reference:
|
[19] SKULA L.: A note on the index of irregularity.J. Number Theory 22 (1986), 125-138. Zbl 0589.12006, MR 0826946 |
Reference:
|
[20] VANDIVER H. S.: A property of cyclotomic integers and its relation to Fermat's last theorem.Ann. of Math. 21 (1919-20), 73-80. MR 1503604 |
Reference:
|
[21] WASHINGTON L. C.: Introduction to Cyclotomic Fields.Springer-Verlag, New York-Heidelberg-Berlin, 1982. Zbl 0484.12001, MR 0718674 |
. |