Previous |  Up |  Next

Article

Title: Some bases of the Stickelberger ideal (English)
Author: Skula, Ladislav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 5
Year: 1993
Pages: 541-571
.
Category: math
.
MSC: 11R18
idZBL: Zbl 0798.11044
idMR: MR1273710
.
Date available: 2009-09-25T10:51:55Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136590
.
Reference: [1] AGOH T.: On Fermat's last theorem.C.R. Math. Rep. Acad. Sci. Canada VII (1990), 11-15. Zbl 0703.11015, MR 1043087
Reference: [2] BENNETON G.: Sur le dernier théorème de Fermat.Ann. Sci. Univ. Besançon Math. 3 (1974), 15pp. Zbl 0348.10010, MR 0419347
Reference: [3] FUETER R.: Kummers Kriterium zum letzten Theorem von Fermat.Math. Ann. 85 (1922), 11-20. MR 1512040
Reference: [4] GRANVILLE A. J.: Diophantine Equations with Varying Exponents (with Special Reference to Fermat's Last Theorem).Ph. D. thesis, Queen's University, 1987.
Reference: [5] IWASAWA K.: A class number formula for cyclotomic fields.Ann. of Math. 76 (1962), 171-179. Zbl 0125.02003, MR 0154862
Reference: [6] KUČERA R.: On bases of the Stickelberger ideal and of the group of circular units of a cyclotomic fields.J. Number Theory 40 (1992), 284-316. MR 1154041
Reference: [7] KUMMER E. E.: Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren.J. Reine Angew. Math. 35 (1847), 327-367, (Coll. Papers I, 211-251).
Reference: [8] KUMMER E. E.: Einige Sëtze über die aus den Wurzeln der Gleichung αλ = 1 gebildeten complexen Zahlen, für den Fall, daß die Klassenanzahl durch λ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat'schen Lehrsatzes.Abh. Königl. Akad. Wiss., Berlin (1857), 41-74, (Coll. Papers I, 639-692).
Reference: [9] LERCH M.: Zur Theorie des Fermatschen Quotienten (a p-1 - 1)/p = q(a).Math. Ann. 60 (1905), 471-490. MR 1511321
Reference: [10] LE LIDEC P.: Sur une forme nouvelle des congruences de Kummer-Mirimanoff.C.R. Acad. Sci. Paris Sér. A 265 (1967), 89-90. Zbl 0154.29602, MR 0217013
Reference: [11] LE LIDEC P.: Nouvelle forme des congruences de Kummer-Mirimanoff pour le premier cas du théorème de Fermat.Bull. Soc. Math. France 97 (1969), 321-328. Zbl 0188.10102, MR 0262158
Reference: [12] NEWMAN M.: A table of the first factor for prime cyclotomic fields.Math. Comp. 24(109) (1970), 215-219. MR 0257029
Reference: [13] SINNOTT W.: On the Stickelberger ideal and the circular units of a cyclotomic field.Ann. of Math. 108 (1978), 107-134. Zbl 0395.12014, MR 0485778
Reference: [14] SINNOTT W.: On the Stickelberger ideal and the circular units of an abelian field.In: Invent. Math. 62, Springer, Berlin-New York, 1980, pp. 181-234. Zbl 0465.12001, MR 0595586
Reference: [15] SKULA L.: Index of irregularity of a prime.J. Reine Angew. Math. 315 (1980), 92-106. Zbl 0419.10016, MR 0564526
Reference: [16] SKULA L.: Another proof of Iwasawa's class number formula.Acta Arith. XXXIX (1981), 1-6. Zbl 0372.12012, MR 0638737
Reference: [17] SKULA L.: A remark on Mirimanoff polynomials.Comment. Math. Univ. St. Paul. 31 (1982), 89-97. Zbl 0496.10006, MR 0674586
Reference: [18] SKULA L.: Systems of equations depending on certain ideals.Arch. Math. (Brno) 21 (1985), 23-38. Zbl 0589.12005, MR 0818304
Reference: [19] SKULA L.: A note on the index of irregularity.J. Number Theory 22 (1986), 125-138. Zbl 0589.12006, MR 0826946
Reference: [20] VANDIVER H. S.: A property of cyclotomic integers and its relation to Fermat's last theorem.Ann. of Math. 21 (1919-20), 73-80. MR 1503604
Reference: [21] WASHINGTON L. C.: Introduction to Cyclotomic Fields.Springer-Verlag, New York-Heidelberg-Berlin, 1982. Zbl 0484.12001, MR 0718674
.

Files

Files Size Format View
MathSlov_43-1993-5_2.pdf 1.920Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo