Title:
|
The irregularity strength of generalized Petersen graphs (English) |
Author:
|
Jendroľ, Stanislav |
Author:
|
Žoldák, Vladimír |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
45 |
Issue:
|
2 |
Year:
|
1995 |
Pages:
|
107-113 |
. |
Category:
|
math |
. |
MSC:
|
05C35 |
MSC:
|
05C78 |
idZBL:
|
Zbl 0840.05081 |
idMR:
|
MR1357066 |
. |
Date available:
|
2009-09-25T11:05:04Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/136640 |
. |
Reference:
|
[1] CHARTRAND G., JACOBSON M. S., LEHEL J., OELLERMANN O. R., RUIZ S., SABA F.: Irregular networks.Congr. Numer. 64 (1988), 184-192. MR 0988682 |
Reference:
|
[2] DINITZ J. H., GARNICK D. K., GYÁRFÁS A.: On the irregularity strength of the m x n grid.J. Graph Theory 16 (1992), 355-374. MR 1174459 |
Reference:
|
[3] EBERT G., HEMMETER J., LAZEBNIK F., WOLDAR A.: Irregularity strengths of certain graphs.Congr. Numer. 71 (1990), 39-52. MR 1041614 |
Reference:
|
[4] FAUDREE R. J., JACOBSON M. S., KINCH L., LEHEL J.: Irregularity strength of dense graphs.Discrete Math. 91 (1991), 45-59. Zbl 0755.05092, MR 1120886 |
Reference:
|
[5] FAUDREE R. J., LEHEL J.: Bound on the irregularity strength of regular graphs.In: Combinatorics. Colloq. Math. Soc. János Bolyai 52, Eger, 1987, pp. 247-256. MR 1221563 |
Reference:
|
[6] GYÁRFÁS A.: The irregularity strength of $K_{m,n}$ is 4 for odd $m$.Discrete Math. 71 (1988), 273-274. MR 0959011 |
Reference:
|
[7] GYÁRFÁS A.: The irregularity strength of $K_n - mK_2$.Utilitas Math. 35 (1989), 111-114. MR 0992395 |
Reference:
|
[8] KINCH L., LEHEL J.: The irregularity strength of $tP_3$.Discrete Math. 94 (1991), 75-79. MR 1141057 |
Reference:
|
[9] LEHEL J.: Facts and quests on degree irregular assignments.In: Graph Theory, Combinatorics and Applications, J. Wiley Sons, New York, 1991, pp. 765-782. Zbl 0841.05052, MR 1170823 |
Reference:
|
[10] McQUILLAN D., RICHTER R. B.: On the crossing numbers of certain generalized Petersen graphs.Discrete Math. 104 (1992), 311-320. Zbl 0756.05048, MR 1171327 |
Reference:
|
[11] NEDELA R., ŠKOVIERA M.: Which generalized Petersen graphs are Cayley graphs?.J. Graph Theory (Submitted). Zbl 0812.05026, MR 1315420 |
Reference:
|
[12] SCHWENK A. J.: Enumeration of Hamiltonian cycles in certain generalized Petersen graphs.J. Combin. Theory Ser. B 47 (1989), 53-59. Zbl 0626.05038, MR 1007713 |
Reference:
|
[13] WATKINS M. E.: A theorem on Tait colorings with an application to generalized Petersen graphs.J. Combin. Theory 6 (1969), 152-164. MR 0236062 |
. |