Previous |  Up |  Next

Article

Title: Linear finitely separated objects of subcategories of domains (English)
Author: Paseka, Jan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 5
Year: 1996
Pages: 457-490
.
Category: math
.
MSC: 06D20
idZBL: Zbl 0890.06007
idMR: MR1451036
.
Date available: 2009-09-25T11:18:45Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136685
.
Reference: [1] ABRAMSKY S.: Domain theory in logical form.Ann. Pure Appl. Logic 51 (1991), 1-77. Zbl 0737.03006, MR 1100496
Reference: [2] ABRAMSKY S.-JUNG A.: Domain theory.In: Handbook of Logic in Computer Science. Vol. 3 (S. Abramskу, D. M. Gabbaу, and T. S. E. Maibaum, eds.), Clarendon Press, Oxford, 1995. MR 1365749
Reference: [3] BANASCHEWSKI B.: Another look at the localic Tychonoff theorem.Comment. Math. Univ. Carolin. 29 (1988), 647-656. Zbl 0667.54009, MR 0982782
Reference: [4] BANASCHEWSKI B.-NIEFIELD S. B.: Projective and supercoherent frames.J. Pure Appl. Algebra 70 (1991), 45-51. Zbl 0744.06006, MR 1100504
Reference: [5] ERNE M.: The ABC of Order and Topology.Category Theory at Work, Heldеrmann Vеrlag, Bеrlin, 1991. Zbl 0735.18005, MR 1147919
Reference: [6] GIERZ G.-HOFMANN K. H.-KEIMEL K.-LAWSON J. D.-MISLOVE M., SCOТТ D. S.: A Compendium of Continuous Lattices.Springеr Vеrlag, Nеw York, 1980. MR 0614752
Reference: [7] GIERZ G.-KEIMEL K.: Continuous ideal completions and compactifications.In: Continuous latticеs and thеir applications. Lеcturе Notеs in Purе and Appl. Math. 101, M. Dеkkеr Inc, Nеw York-Basеl, 1985, pp. 97-124.
Reference: [8] HUТH. M.-JUNG A.-KEIMEL K.: Linear types, approximation and topology.In: Procееdings, Ninth Annual IEEE Sуmposium on Logic in Computеr Sciеncе, IEEE Computеr Sociеtу Prеss, 1994, pp. 110-114.
Reference: [9] HUTH M.-MISLOVE M.: A Characterization of linear FS-lattices.Technical Report 1679, Technische Hochschule, Darmstadt.
Reference: [10] HUTH M.: Linear domains and linear maps.In: Mathematical Foundation of Programming Semantics. Lecture Notes in Comput. Sci. 802 (S. Brookes, M. Main, A. Melton and D. Schmidt, eds.), Springer Verlag, New York, 1994, pp. 438-453. MR 1314645
Reference: [11] JOHNSTONE P. T.-VICKERS S.: Preframe presentations present.In: Category Theory Proceedings of the International Conference, Como 1990. Lecture Notes in Math. 1488. Springer Verlag, New York, 1991, pp. 193-212. MR 1173013
Reference: [12] JOHNSTONE P. T.: Stone Spaces.Cambridge Stud. Adv. Math. 3, Cambridge University Press, Cambridge, 1982. Zbl 0499.54001, MR 0698074
Reference: [13] JUNG A.: Cartesian Closed Categories of Domains.CWI Tract 66, Centrum Wisk. Inform., Amsterdam, 1989. Zbl 0719.06004, MR 1006873
Reference: [14] JUNG A.-SUNDERHAUF P.: On the duality of compact vs. open.In: Papers on General Topology and Applications: Eleventh Summer Conference at University of Southern Maine. Ann. New York Acad. Sci. (S. Andima, R. C. Flagg, G. Itzkowitz, P. Misra, Y. Kong and R. D. Kopperman, eds.), New York Academy of Sciences, New York, 1996 (To appear). Zbl 0885.54001, MR 1429656
Reference: [15] LAWSON J. D.: The versatile continuous order.In: Mathematical Foundations of Programming Language Semantics. Lecture Notes in Comput. Sci. 98 (M. Main. A. Melton, M. Mislove and D. Schmidt, eds.), Springer Verlag, New York, 1988, pp. 134-160. Zbl 0662.06002, MR 0948487
Reference: [16] LAWSON J. D.: Order and strongly sober compactification.In: Topology and Category Theory in Computer Science (G. M. Reed, A. W. Roscoe and R. F. Wrachter, eds.). Clarendon Press, Oxford, 1991, pp. 179 205. MR 1145775
Reference: [17] SMYTH M. B.: Stable local compactification L..J. London Math. Soc. (2) 45 (1992), 321-340. MR 1171559
Reference: [18] VICKERS S. J.: Information systems for continuous posets.Theoret. Comput. Sci. 114 (1993), 114-229. Zbl 0779.06006, MR 1228858
.

Files

Files Size Format View
MathSlov_46-1996-5_3.pdf 1.967Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo