[1] BUSSEMAKER F. C.-CVETKOVIC D.: 
There are exactly 13 connected cubic integral graphs. Publ. Elektrotech. Fak. Ser. Mat. Fiz. 544 (1976), 43-48. 
MR 0465944[2] CVETKOVIC D.-DOOB M.-SACHS H.: 
Spectra of Graphs. VEB Deutscher Verlag d. Wiss, Berlin, 1980. 
MR 0572262 | 
Zbl 0458.05042[4] HARARY F.-SCHWENK A. J.: 
Which graphs have integral spectra?. In: Graphs and Combinatorics. Lecture Notes in Math. 406, Springer-Verlag, Berlin, 1974, pp. 45-51. 
MR 0387124[5] HARARY F.: 
Four difficult unsolved problems in graph theory. In: Recent Advances in Graph Theory, Academia, Praha, 1975, pp. 253-255. 
MR 0382042 | 
Zbl 0329.05125[6] HIC P.-NEDELA R.-PAVLIKOVA S.: 
Front divisor of trees. Acta Math. Univ. Comenian. LXI (1992), 69-84. 
MR 1205861[7] HIC P.-NEDELA R.: 
Note on zeros of the characteristic polynomial of balanced integral trees. Acta Univ. Mathaei Belii Ser. Math. 3 (1995), 31-35. 
MR 1409887[8] LI X. L.-LIN G. N.: 
On integral trees problems. Kexue Tongbao (Chinese) 33 (1988), 802-806. 
MR 0963194[10] SCHWENK J. A.: 
Computing the characteristic polynomial of a graphs. In: Graphs and Combinatorics. Lecture notes in Math. 406, Springer-Verlag, Berlin, 1974, pp. 247-251. 
MR 0387126[11] SCHWENK A. J.: 
Exactly thirteen connected cubic graphs have integral spectra. In: Notes in Math. Ser. A 642, Springer-Verlag, Berlin, 1978, pp. 516-533. 
MR 0499520 | 
Zbl 0376.05050[12] SCHWENK A. J.-WATANABE M.: 
Integral starlike trees. J. Austral. Math. Soc. Ser. A 28 (1979), 120-128. 
MR 0541173 | 
Zbl 0428.05021