Title:
|
Prime ideals and polars in DR$\ell $-monoids and BL-algebras (English) |
Author:
|
Kühr, Jan |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
53 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
233-246 |
. |
Category:
|
math |
. |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1058.06017 |
idMR:
|
MR2025020 |
. |
Date available:
|
2009-09-25T14:14:35Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/136885 |
. |
Reference:
|
[1] ANDERSON M.-FEIL T.: Lattice-Ordered Groups (An Introduction).D. Reidel, Dordrecht, 1988. Zbl 0636.06008, MR 0937703 |
Reference:
|
[2] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo $BL$-algebras: Part I.Mult.-Valued Log. 8 (2002), 673-714. MR 1948853 |
Reference:
|
[3] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo $BL$-algebras: Part II.Mult.-Valued Log. 8 (2002), 717-750. MR 1948854 |
Reference:
|
[4] DVUREČENSKIJ A.: On pseudo $MV$-algebras.Soft Comput. 5 (2001), 347-354. Zbl 1081.06010 |
Reference:
|
[5] DVUREČENSKIJ A.: States on pseudo $MV$-algebras.Studia Logica 68 (2001), 301-327. Zbl 1081.06010, MR 1865858 |
Reference:
|
[6] GEORGESCU G.-IORGULESCU A.: Pseudo $MV$-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439 |
Reference:
|
[7] GRÄTZER G.: General Lattice Theory.Birkhäuser, Basel-Boston-Berlin, 1998. Zbl 0909.06002, MR 1670580 |
Reference:
|
[8] HÁJEK P.: Basic fuzzy logic and $BL$-algebras.Soft Comput. 2 (1998), 124-128. |
Reference:
|
[9] HANSEN M. E.: Minimal prime ideals in autometrized algebras.Czechoslovak Math. J. 44(119) (1994), 81-90. Zbl 0814.06011, MR 1257938 |
Reference:
|
[10] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Thesis, Palacký Univ., Olomouc, 1996. |
Reference:
|
[11] KOVÁŘ T.: Two remarks on dually residuated lattice ordered semigroups.Math. Slovaca 49 (1999), 17-18. Zbl 0943.06007, MR 1804468 |
Reference:
|
[12] KÜHR J.: Ideals of noncommutative $DR\ell$-monoids.(Submitted). Zbl 1081.06017 |
Reference:
|
[13] KÜHR J.: Pseudo $BL$-algebras and $DR\ell$-monoids.Math. Bohem. (To appear). MR 1995573 |
Reference:
|
[14] MARTINEZ J.: Archimedean lattices.Algebra Universalis 3 (1973), 247-260. Zbl 0317.06004, MR 0349503 |
Reference:
|
[15] RACHŮNEK J.: Prime ideals in autometrized algebras.Czechoslovak Math. J. 37 (112) (1987), 65-69. Zbl 0692.06007, MR 0875128 |
Reference:
|
[16] RACHŮNEK J.: Polars in autometrized algebras.Czechoslovak Math. J. 39(114) (1989), 681-685. Zbl 0705.06010, MR 1018003 |
Reference:
|
[17] RACHŮNEK J.: Polars and annihilators in representable $DR\ell$-monoids and $MV$-algebras.Math. Slovaca 51 (2001), 1-12. MR 1817718 |
Reference:
|
[18] RACHŮNEK J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52(127) (2002), 255-273. Zbl 1012.06012, MR 1905434 |
Reference:
|
[19] SNODGRASS J. T.-TSINAKIS C.: The finite basis theorem for relatively normal lattices.Algebra Universalis 33 (1995), 40-67. Zbl 0819.06009, MR 1303631 |
Reference:
|
[20] SWAMY K. L. N.: Dually residuated lattice ordered semigroups I.Math. Ann. 159 (1965), 105-114. MR 0183797 |
Reference:
|
[21] SWAMY K. L. N.: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71-74. Zbl 0158.02601, MR 0200364 |
. |