Previous |  Up |  Next

Article

Title: Prime ideals and polars in DR$\ell $-monoids and BL-algebras (English)
Author: Kühr, Jan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 53
Issue: 3
Year: 2003
Pages: 233-246
.
Category: math
.
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1058.06017
idMR: MR2025020
.
Date available: 2009-09-25T14:14:35Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136885
.
Reference: [1] ANDERSON M.-FEIL T.: Lattice-Ordered Groups (An Introduction).D. Reidel, Dordrecht, 1988. Zbl 0636.06008, MR 0937703
Reference: [2] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo $BL$-algebras: Part I.Mult.-Valued Log. 8 (2002), 673-714. MR 1948853
Reference: [3] DI NOLA A.-GEORGESCU G.-IORGULESCU A.: Pseudo $BL$-algebras: Part II.Mult.-Valued Log. 8 (2002), 717-750. MR 1948854
Reference: [4] DVUREČENSKIJ A.: On pseudo $MV$-algebras.Soft Comput. 5 (2001), 347-354. Zbl 1081.06010
Reference: [5] DVUREČENSKIJ A.: States on pseudo $MV$-algebras.Studia Logica 68 (2001), 301-327. Zbl 1081.06010, MR 1865858
Reference: [6] GEORGESCU G.-IORGULESCU A.: Pseudo $MV$-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [7] GRÄTZER G.: General Lattice Theory.Birkhäuser, Basel-Boston-Berlin, 1998. Zbl 0909.06002, MR 1670580
Reference: [8] HÁJEK P.: Basic fuzzy logic and $BL$-algebras.Soft Comput. 2 (1998), 124-128.
Reference: [9] HANSEN M. E.: Minimal prime ideals in autometrized algebras.Czechoslovak Math. J. 44(119) (1994), 81-90. Zbl 0814.06011, MR 1257938
Reference: [10] KOVÁŘ T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Thesis, Palacký Univ., Olomouc, 1996.
Reference: [11] KOVÁŘ T.: Two remarks on dually residuated lattice ordered semigroups.Math. Slovaca 49 (1999), 17-18. Zbl 0943.06007, MR 1804468
Reference: [12] KÜHR J.: Ideals of noncommutative $DR\ell$-monoids.(Submitted). Zbl 1081.06017
Reference: [13] KÜHR J.: Pseudo $BL$-algebras and $DR\ell$-monoids.Math. Bohem. (To appear). MR 1995573
Reference: [14] MARTINEZ J.: Archimedean lattices.Algebra Universalis 3 (1973), 247-260. Zbl 0317.06004, MR 0349503
Reference: [15] RACHŮNEK J.: Prime ideals in autometrized algebras.Czechoslovak Math. J. 37 (112) (1987), 65-69. Zbl 0692.06007, MR 0875128
Reference: [16] RACHŮNEK J.: Polars in autometrized algebras.Czechoslovak Math. J. 39(114) (1989), 681-685. Zbl 0705.06010, MR 1018003
Reference: [17] RACHŮNEK J.: Polars and annihilators in representable $DR\ell$-monoids and $MV$-algebras.Math. Slovaca 51 (2001), 1-12. MR 1817718
Reference: [18] RACHŮNEK J.: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52(127) (2002), 255-273. Zbl 1012.06012, MR 1905434
Reference: [19] SNODGRASS J. T.-TSINAKIS C.: The finite basis theorem for relatively normal lattices.Algebra Universalis 33 (1995), 40-67. Zbl 0819.06009, MR 1303631
Reference: [20] SWAMY K. L. N.: Dually residuated lattice ordered semigroups I.Math. Ann. 159 (1965), 105-114. MR 0183797
Reference: [21] SWAMY K. L. N.: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71-74. Zbl 0158.02601, MR 0200364
.

Files

Files Size Format View
MathSlov_53-2003-3_2.pdf 906.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo