Previous |  Up |  Next

Article

Title: Functional representation of preiterative/combinatory formalism (English)
Author: Fleischer, Isidore
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 54
Issue: 4
Year: 2004
Pages: 327-335
.
Category: math
.
MSC: 03B40
MSC: 03C05
MSC: 08A02
idZBL: Zbl 1097.03012
idMR: MR2102287
.
Date available: 2009-09-25T14:21:41Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136910
.
Reference: [1] CURRY H. B.-FEYS R.: Combinatory Logic.N. Holland, Amsterdam, 1968. Zbl 0197.00601, MR 0244051
Reference: [2] DICKER R. M.: The substitutive law.Proc. London Math. Soc. 13 (1963), 493-510. Zbl 0122.25501, MR 0153610
Reference: [3] FLEISCHER I.: Semigroup of not bijective finite selfmaps of an infinite set.Algebra Universalis 33 (1995), 186-190; Semigroup Forum 58 (1999), 468-470. Zbl 0821.03030, MR 1318982
Reference: [4] HALMOS P. R.: Algebraic Logic.Chelsea Publ. Comp., New York, 1962. Zbl 0101.01101, MR 0131961
Reference: [5] HINDLEY J. R.-SELDIN J.: Introduction to Combinators and X-Calculus.London Math. Soc. Stud. Texts 1, Cambridge Univ. Press, Cambridge, 1986. MR 0879272
Reference: [6] HOWIE J. M.: An Introduction to Semigroup Theory.London Math. Soc. Monogr. 7, Academic Press, London-New York-San Francisco, 1976. Zbl 0355.20056, MR 0466355
Reference: [7] JÓNSSON B.: Defining relations for full semigroups of finite transformations.Michigan Math. J. 9 (1962), 77-85. Zbl 0111.03803, MR 0133390
Reference: [8] LAUSCH H.-NÖBAUER W.: Algebra of Polynomials.North-Holland Math. Library 5, North-Holland Publ. Comp./Amer. Elsevier Publ. Comp., Inc, Amsterdam-London/New York, 1973. Zbl 0283.12101, MR 0349544
Reference: [9] MAĽCEV A. I.: Iterative Algebras and Posťs Varieties (Russian).[English translation in: The Metamathematics of Algebraic Systems. Collected papers: 1936-1967. Stud. Logic Found. Math. 66, North-Holland Publ. Comp., Amsterdam-London, 1971].
Reference: [10] MENGER K.: On substitutive algebra and its syntax.Z. Math. Logik Grundlag. Math. 10 (1964), 81-104. Zbl 0132.24601, MR 0158814
Reference: [11] ROSENBERG I. G.: Maľcev algebras for universal algebra terms.In: Algebraic Logic and Universal Algebra in Computer Science, Conference, Ames, Iowa, USA, June 1-4, 1988. Proceedings (C. H. Bergman et al., eds.), Lecture Notes in Comput. Sci. 425, Springer-Verlag, Berlin, 1990, pp. 195-208. MR 1077844
Reference: [12] SCHÖNFINKEL M.: Bausteine der Mathematischen Logik.Math. Ann. 92 (1924), 305-316. [English translation in: HEIJENOORT, J. VAN: From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, Mass., 1967]. MR 1512218
Reference: [13] STENLUND S.: Combinators, X-Terms and Proof Theory.D. Reidel, Dordrecht, 1972.
Reference: [14] WHITLOCK H. I.: A composition algebra for multiplace functions.Math. Ann. 157 (1964), 167-178. Zbl 0126.03501, MR 0173647
.

Files

Files Size Format View
MathSlov_54-2004-4_1.pdf 508.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo