Previous |  Up |  Next

Article

Title: Spectral resolutions for $\sigma$-complete lattice effect algebras (English)
Author: Pulmannová, Sylvia
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 5
Year: 2006
Pages: 555-571
.
Category: math
.
MSC: 03G12
MSC: 81P10
idZBL: Zbl 1141.81007
idMR: MR2293587
.
Date available: 2009-09-25T14:35:24Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136934
.
Reference: [1] BARBIERI G.-WEBER H.: Measures on clans and on MV-algebras.In: Handbook of Measure Theorу, vol II (E. Pap, ed.), Elsevier, Amsterdam, 2002, pp. 911-945 (Chap. 22). Zbl 1019.28009, MR 1954632
Reference: [2] BUTNARIU D.-KLEMENT E.: Triangular-norm-based measures and their Markov kernel representation.J. Math. Anal. Appl. 162 (1991), 111-143. Zbl 0751.60003, MR 1135265
Reference: [3] CHANG C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467-490. Zbl 0084.00704, MR 0094302
Reference: [4] CHANG C. C.: A new proof of the completeness of the Lukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74-80. Zbl 0093.01104, MR 0122718
Reference: [5] CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundation of Many-Valued Reasoning.Kluwer Acad. PubL, Dordrecht, 2000. MR 1786097
Reference: [6] CHOVANEC F.-KOPKA F.: D-lattices.Internat. J. Theoret. Phys. 34 (1995), 1297-1302. Zbl 0840.03046, MR 1353674
Reference: [7] DVUREČENSKIJ A.: Loomis-Sikorski theorem for $\sigma$-complete $MV$-algebras and \ell$-groups.J. Austral. Math. Soc. Ser. A 68 (2000), 261-277. Zbl 0958.06006, MR 1738040
Reference: [8] DVUREČENSKIJ A.: MV-observables and MV-algebras.J. Math. Anal. Appl. 259 (2001), 413-428. Zbl 0992.03081, MR 1842068
Reference: [9] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl 0987.81005, MR 1861369
Reference: [10] DVUREČENSKIJ A.-PULMANNOVÁ S.: Conditional probability on a-MV algebras.Fuzzy Sets and Systems 155 (2005), 102-118. MR 2206657
Reference: [11] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logic.Found. Phys. 24 (1994), 1325-1346. MR 1304942
Reference: [12] FOULIS D. J.: Compressible groups.Math. Slovaca 53 (2003), 433-455. Zbl 1114.06012, MR 2038512
Reference: [13] FOULIS D. J.: Compressions on partially ordered abelian groups.Proc. Amer. Math.Soc. 132 (2004), 3581-3587. Zbl 1063.47003, MR 2084080
Reference: [14] FOULIS D. J.: Spectral resolution in a Rickart comgroup.Rep. Math. Phys. 54 (2004), 319-340. Zbl 1161.81310, MR 2107868
Reference: [15] FOULIS D. J.: Compressible groups with general comparability.Math. Slovaca. 55 (2005), 409-429. Zbl 1114.06012, MR 2181781
Reference: [16] FOULIS D. J.: MV and Heyting effect algebras.Found. Phys. 30 (2000), 1687-1706. MR 1810197
Reference: [17] GIUNTINI R.-GREULING H.: Toward a formal language for unsharp properties.Found. Phys. 19 (1989), 931-945. MR 1013913
Reference: [18] GOODEARL K. R.: Partially Ordered Abelian Groups with Interpolation.Math. Surveys Monogr. 20, Amer. Math. Soc, Providence, RI, 1986. Zbl 0589.06008, MR 0845783
Reference: [19] GUDDER S. P.: S-dominating effect algebras.Internat. J. Theoret. Phys. 37 (1998), 915-923. Zbl 0932.03072, MR 1624277
Reference: [20] GUDDER S. P.: Compressible effect algebras.Rep. Math. Phys. 54 (2004), 93-114. Zbl 1075.81011, MR 2098374
Reference: [21] JENČA G.: Sharp and meager elements in orthocomplete homogeneous effect algebras.Preprint, 2004 (Available from http://www.elf.stuba.sk/'jenca/preprint). Zbl 1193.03084, MR 2601154
Reference: [22] JENČA G.-PULMANNOVÁ S.: Orthocomplete effect algebras.Proc Amer. Math.Soc 131 (2003), 2663-2671. Zbl 1019.03046, MR 1974321
Reference: [23] JENČA G.-PULMANNOVÁ S.: Ideals and quotients in lattice ordered effect algebras.Soft Comput. 5 (2001), 376-380. Zbl 1004.06009
Reference: [24] JENČA G.-RIEČANOVÁ Z.: On sharp elements in lattice ordered effect algebras.Busefal 80 (1999), 24-29.
Reference: [25] KOPKA F.-CHOVANEC F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269
Reference: [26] MUNDICI D.: Interpretations of $AF$ $C^\ast$-algebras in Lukasziewicz sentential calculus.J. Funct. Anal. 65 (1986), 15-63. MR 0819173
Reference: [27] MUNDICI D.: Tensor products and the Loomis-Sikorski theorem for MV-algebras.Adv. in Appl. Math. 22 (1999), 227-248. Zbl 0926.06004, MR 1659410
Reference: [28] PULMANNOVÁ S.: A spectral theorem for a-MV algebras.Kybernetika 41 (2005), 361-374. MR 2181424
Reference: [29] PULMANNOVÁ S.: Spectral resolutions in Dedekind $\sigma$-complete $\ell$-groups.J. Math. Anal. Appl. 309 (2005), 322-335. Zbl 1072.06014, MR 2154046
Reference: [30] PULMANNOVÁ S.: Commutator-finite D-lattices.Order 21 (2004), 91-105. Zbl 1081.06013, MR 2209320
Reference: [31] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics.Kluwer Acad. Publ./VEDA, Dordrecht/Bratislava, 1991. Zbl 0743.03039, MR 1176314
Reference: [32] RIEČAN B.-NEUBRUNN T.: Integral, Measure and Ordering.Kluwer Acad. Publ./ Ister Science, Dordrecht/Bratislava, 1997. Zbl 0916.28001, MR 1489521
Reference: [33] RIEČANOVÁ Z.: Generalization of blocks for D-lattices and lattice ordered effect algebras.Internat. J. Theoret. Phys. 39 (2000), 231-237. Zbl 0968.81003, MR 1762594
Reference: [34] RIEČANOVÁ Z.: Smearing of states defined on sharp elements onto effect algebras.Internat. J. Theoret. Phys. 41 (2002), 1511-1524. MR 1932844
Reference: [35] VARADARAJAN V. S.: Geometry of Quantum Theory.Springer-Verlag, New York, 1985. Zbl 0581.46061, MR 0805158
.

Files

Files Size Format View
MathSlov_56-2006-5_7.pdf 970.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo