Previous |  Up |  Next

Article

Title: On a cancellation rule for subdirect products of lattice ordered groups and of $\operatorname {GMV}$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 57
Issue: 3
Year: 2007
Pages: [201]-210
.
Category: math
.
MSC: 06D35
MSC: 06F15
idZBL: Zbl 1150.06022
idMR: MR2357818
.
Date available: 2009-09-25T14:37:45Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136948
.
Reference: [1] APPLESON R. R.-LOVÁSZ L.: A characterization of cancellable k-ary structures.Period. Math. Hungar. 6 (1975), 17-19. Zbl 0306.08001, MR 0373995
Reference: [2] BIRKHOFF G.: Lattice Theory.(Зrd ed.) Amer. Math. Soc, Providence, RI, 1967. Zbl 0153.02501, MR 0227053
Reference: [3] CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundations of Many-valued Reasoning.Kluwer Acad. PubL, Dordrecht, 2000. Zbl 0937.06009, MR 1786097
Reference: [4] DVUREČENSKIJ A.: Pseudo MV-algebras are intervals of i-groups.J. Austral. Math. Soc. 72 (2002), 427-445. MR 1902211
Reference: [5] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures.Kluwer Acad. PubL, Dordrecht, 2000. Zbl 0987.81005, MR 1861369
Reference: [6] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras: a noncommutative extension of MV-algebras.In: The Proceedings of the Fourth International Sупiposium on Economic Informatics, INFOREC, Bucharest, 6 9 Maу, Romania, 1999, pp. 961-968. Zbl 0985.06007, MR 1730100
Reference: [7] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras.Mult.-Valued Log. 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [8] JAKUBÍK J.: Subdirect product decompositions of MV-algebras.Czechoslovak Math. J. 49 (1999), 163-173. Zbl 0951.06012, MR 1676813
Reference: [9] JAKUBÍK J.: Isomorphisms of direct products of lattice ordered groups.Discuss. Math. Gen. Algebra Appl. 24 (2004), 43-52. Zbl 1068.06017, MR 2117674
Reference: [10] JAKUBÍK J.: Banaschewski's theorem for generalized MV-algebras.(To appear). Zbl 1174.06318
Reference: [11] JAKUBÍK J.-CSONTÓOVÁ M.: Convex isomorphism of directed multilattices.Math. Bohem. 118 (1993), 359-379. MR 1251882
Reference: [12] JAKUBÍK J.-CSONTÓOVÁ M.: Cancellation rule for internal direct product decompositions of connected partially ordered sets.Math. Bohem. 125 (2000), 115-122. MR 1752083
Reference: [13] JAKUBÍK J.-LIHOVÁ J.: On the cancellation rule for disconnected partially ordered sets.Math. Slovaca 54 (2004), 215-223. MR 2076357
Reference: [14] JAKUBÍKOVÁ-STUDENOVSKÁ D.: On a cancellation law for monounary algebras.Math. Bohem. 128 (2003), 79-90. Zbl 1014.08006, MR 1974547
Reference: [15] MCKENZIE R.: Cardinal multiplication of structures with a reflexive relation.Fund. Math. 70 (1971), 59-101. Zbl 0228.08002, MR 0280430
Reference: [16] McKENZIE R.-McNULTY G.-TAYLOR W.: Algebras, Lattices, Varieties, Vol. 1.Wadsworth & Brooks/Cole Math. Ser., Wadsworth & Brooks/Cole Advance B oks & Softwarе, Montеrey, California, 1987. MR 0883644
Reference: [17] LOVÁSZ L.: On the cancellation law among finite relational structures.Period. Math Hungar. 1 (1979), 145-156. MR 0284391
Reference: [18] PLOŠCICA M.-ZELINA M.: Cancellation among finite unary algebras.Discrеtе Math 159 (1996), 191-198. Zbl 0859.08003, MR 1415293
Reference: [19] RACHŮNEK J.: A non-commutative generalizatгon of MV-algebras.Czechoslovak Math. J. 52 (2002), 255-273.
.

Files

Files Size Format View
MathSlov_57-2007-3_1.pdf 563.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo