Title:
|
Symmetric difference on orthomodular lattices and $Z_2$-valued states (English) |
Author:
|
Matoušek, Milan |
Author:
|
Pták, Pavel |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
4 |
Year:
|
2009 |
Pages:
|
535-547 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of $Z_2$-valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space. (English) |
Keyword:
|
orthomodular lattice |
Keyword:
|
quantum logic |
Keyword:
|
symmetric difference |
Keyword:
|
Boolean algebra |
Keyword:
|
group-valued state |
MSC:
|
03G12 |
MSC:
|
06A15 |
MSC:
|
28E99 |
MSC:
|
81P10 |
idZBL:
|
Zbl 1212.06021 |
idMR:
|
MR2583131 |
. |
Date available:
|
2009-12-22T10:03:19Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/137444 |
. |
Reference:
|
[1] Beran L.: Orthomodular Lattices, Algebraic Approach.D. Reidel, Dordrecht, 1985. Zbl 0558.06008, MR 0784029 |
Reference:
|
[2] Bruns G., Harding J.: Algebraic aspects of orthomodular lattices.in Coecke B., Moore D. and Wilce A., Eds., Current Research in Operational Quantum Logic, 2000, pp. 37--65. Zbl 0955.06003, MR 1907155 |
Reference:
|
[3] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht, and Ister Science, Bratislava, 2000. MR 1861369 |
Reference:
|
[4] Greechie R.J.: Orthomodular lattices admitting no states.J. Combinatorial Theory 10 (1971), 119--132. Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X |
Reference:
|
[5] Hamhalter J.: Quantum Measure Theory.Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. Zbl 1038.81003, MR 2015280 |
Reference:
|
[6]
: Handbook of Quantum Logic and Quantum Structures.ed. by K. Engesser, D.M. Gabbay and D. Lehmann, Elsevier, 2007. Zbl 1184.81003, MR 2408886 |
Reference:
|
[7] Gudder S.P.: Stochastic Methods in Quantum Mechanics.North-Holland, New York-Oxford, 1979. Zbl 0439.46047, MR 0543489 |
Reference:
|
[8] Harding J., Jager E., Smith D.: Group-valued measures on the lattice of closed subspaces of a Hilbert space.Internat. J. Theoret. Phys. 44 (2005), 539--548. Zbl 1130.81306, MR 2153018, 10.1007/s10773-005-3981-x |
Reference:
|
[9] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496 |
Reference:
|
[10] Maeda F., Maeda S.: Theory of Symmetric Lattices.Springer, Berlin-Heidelberg-New York, 1970. Zbl 0361.06010, MR 0282889 |
Reference:
|
[11] Matoušek M.: Orthocomplemented lattices with a symmetric difference.Algebra Universalis 60 (2009), 185--215. MR 2491422, 10.1007/s00012-009-2105-5 |
Reference:
|
[12] Matoušek M., Pták P.: Orthocomplemented posets with a symmetric difference.Order 26 (2009), 1--21. MR 2487165, 10.1007/s11083-008-9102-8 |
Reference:
|
[13] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics.Pacific J. Math. 135 (1988), 361--369. MR 0968618, 10.2140/pjm.1988.135.361 |
Reference:
|
[14] Navara M.: An orthomodular lattice admitting no group-valued measure.Proc. Amer. Math. Soc. 122 (1994), 7--12. Zbl 0809.06008, MR 1191871, 10.1090/S0002-9939-1994-1191871-X |
Reference:
|
[15] Navara M., Pták P.: For $n\geq 5$ there is no nontrivial $Z_2$-measure on $L(R^n)$.Internat. J. Theoret. Phys. 43 (2004), 1595--1598. MR 2108296, 10.1023/B:IJTP.0000048805.76224.2d |
Reference:
|
[16] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. MR 1176314 |
Reference:
|
[17] Svozil K., Tkadlec J.: Greechie diagrams, noexistence of measures in quantum logics, and Kochen--Specker-type constructions.J. Math. Phys. 37 (1996), 5380--5401. MR 1417146, 10.1063/1.531710 |
Reference:
|
[18] Varadarajan V.S.: Geometry of Quantum Theory I, II.Van Nostrand, Princeton, 1968, 1970. |
Reference:
|
[19] Weber H.: There are orthomodular lattices without non-trivial group-valued states: A computer-based construction.J. Math. Anal. Appl. 183 (1994), 89--93. Zbl 0797.06010, MR 1273434, 10.1006/jmaa.1994.1133 |
. |