Previous |  Up |  Next

Article

Title: Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects (English)
Author: Roger, Claude
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 4
Year: 2009
Pages: 301-324
Summary lang: English
.
Category: math
.
Summary: We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization. (English)
Keyword: supergeometry
Keyword: odd symplectic manifolds
Keyword: functional integral quantization
Keyword: Graded Lie Algebras
Keyword: Hochschild cohomology
MSC: 16-02
MSC: 16E40
MSC: 16E45
MSC: 17B56
MSC: 17B70
MSC: 53D17
MSC: 53D55
MSC: 58A50
MSC: 58D29
MSC: 81T70
idZBL: Zbl 1212.58004
idMR: MR2591684
.
Date available: 2009-12-22T07:53:31Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/137462
.
Reference: [1] Akman, F.: Multibraces on the Hochschild space.J. Pure Appl. Algebra 167 (2002), no. 2-3, 129–163. MR MR1874538 (2002k:17001) Zbl 1008.17001, MR 1874538, 10.1016/S0022-4049(01)00026-3
Reference: [2] Batalin, I. A., Vilkovisky, G. A.: Gauge algebra and quantization.Phys. Lett. B 102 (1981), no. 1, 27–31. MR MR616572 (82j:81047) MR 0616572, 10.1016/0370-2693(81)90205-7
Reference: [3] Batalin, I. A., Vilkovisky, G. A.: Quantization of gauge theories with linearly dependent generators.Phys. Rev. D (3) 28 (1983), no. 10, 2567–2582. MR MR726170 (85i:81068a) MR 0726170, 10.1103/PhysRevD.28.2567
Reference: [4] Bonechi, F., Zabzine, M.: Poisson Sigma model on the sphere.Comm. Math. Phys. 285 (2009), no. 3, 1033–1063. Zbl 1247.53092, MR 2470915, 10.1007/s00220-008-0615-1
Reference: [5] Bouwknegt, P., McCarthy, J., Pilch, K.: The ${\mathcal{W}}_3$ algebra.Lecture Notes in Physics. New Series m: Monographs, vol. 42, Springer-Verlag, Berlin, 1996. MR MR1423803 (97m:17029) MR 1423803
Reference: [6] Brylinski, J.-L., : A differential complex for Poisson manifolds.J. Differential Geom. 28 (1988), no. 1, 93–114. MR MR950556 (89m:58006) Zbl 0634.58029, MR 0950556
Reference: [7] Cahen, M., Gutt, S., De Wilde, M.: Local cohomology of the algebra of $C^{\infty }$ functions on a connected manifold.Lett. Math. Phys. 4 (1980), no. 3, 157–167. MR MR583079 (81j:58046) MR 0583079, 10.1007/BF00316669
Reference: [8] Calvez-Carillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky algebras.Preprint, 2008. MR MR2062626 (2005i:53122)
Reference: [9] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton University Press, Princeton, NJ, 1956. Zbl 0075.24305, MR 0077480
Reference: [10] Cattaneo, A.: On the BV-formalism.Preprint, Zürich Universität, 2005. MR MR2062626 (2005i:53122)
Reference: [11] Connes, A.: Noncommutative geometry.Academic Press Inc., San Diego, CA, 1994. MR MR1303779 (95j:46063) Zbl 0818.46076, MR 1303779
Reference: [12] De Wilde, M. and Lecomte, P., : An homotopy formula for the Hochschild cohomology.Compositio Math. 96 (1995), no. 1, 99–109. MR MR1323727 (96f:16012) MR 1323727
Reference: [13] : Quantum fields and strings: a course for mathematicians. Vol. 1, 2.American Mathematical Society, Providence, RI, 1999, Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. MR MR1701618 (2000e:81010) Zbl 0984.00503, MR 1701618
Reference: [14] Gerstenhaber, M.: The cohomology structure of an associative ring.Ann. of Math. (2) 78 (1963), 267–288. MR MR0161898 (28 #5102) Zbl 0131.27302, MR 0161898
Reference: [15] Gerstenhaber, M., Schack, S. D.: Algebraic cohomology and deformation theory.Deformation theory of algebras and structures and applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 247, Kluwer Acad. Publ., Dordrecht, 1988, pp. 11–264. MR MR981619 (90c:16016) Zbl 0676.16022, MR 0981619
Reference: [16] Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas.Inst. Hautes Études Sci. Publ. Math. (1960), no. 4, 228. MR MR0217083 (36 #177a) Zbl 0118.36206, MR 0163908
Reference: [17] Hochschild, G., Kostant, B., Rosenberg, A.: Differential forms on regular affine algebras.Trans. Amer. Math. Soc. 102 (1962), 383–408. MR MR0142598 (26 #167) Zbl 0102.27701, MR 0142598, 10.1090/S0002-9947-1962-0142598-8
Reference: [18] Huebschmann, J.: Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras.Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 425–440. MR MR1625610 (99b:17021) Zbl 0973.17027, MR 1625610, 10.5802/aif.1624
Reference: [19] Khudaverdian, H. M.: Semidensities on odd symplectic supermanifolds.Comm. Math. Phys. 247 (2004), no. 2, 353–390. MR MR2063265 (2005e:58004) Zbl 1057.58002, MR 2063265, 10.1007/s00220-004-1083-x
Reference: [20] Khudaverdian, H. M., Voronov, Th. Th.: Differential forms and odd symplectic geometry.2006, http://www.citebase.org/abstract?id=oai:arXiv.org:math/0606560. MR 2462360
Reference: [21] Kontsevich, M.: Deformation quantization of Poisson manifolds.Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR MR2062626 (2005i:53122) Zbl 1058.53065, MR 2062626, 10.1023/B:MATH.0000027508.00421.bf
Reference: [22] Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids.Acta Appl. Math. 41 (1995), no. 1-3, 153–165, Geometric and algebraic structures in differential equations. MR MR1362125 (97i:17021) Zbl 0837.17014, MR 1362125, 10.1007/BF00996111
Reference: [23] Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées.J. Differential Geom. 12 (1977), no. 2, 253–300. MR MR0501133 (58 #18565) Zbl 0405.53024, MR 0501133
Reference: [24] Mac Lane, S., : Homology.Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. MR MR1344215 (96d:18001) Zbl 0818.18001, MR 1344215
Reference: [25] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics.Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., Providence, RI, 2002. MR MR1898414 (2003f:18011) Zbl 1017.18001, MR 1898414
Reference: [26] Nijenhuis, A.: Geometric aspects of formal differential operations on tensors fields.Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 463–469. MR MR0170293 (30 #531) MR 0170293
Reference: [27] Peetre, J.: Une caractérisation abstraite des opérateurs différentiels.Math. Scand. 7 (1959), 211–218. Zbl 0089.32502, MR 0112146
Reference: [28] Penkava, M., Schwarz, A.: On some algebraic structures arising in string theory.Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, pp. 219–227. MR MR1314668 (96b:81121) Zbl 0871.17021, MR 1314668
Reference: [29] Poletaeva, E.: Analogues of Riemann tensors for the odd metric on supermanifolds.Acta Appl. Math. 31 (1993), no. 2, 137–169. MR MR1223168 (94d:58166) Zbl 0795.53025, MR 1223168, 10.1007/BF00990540
Reference: [30] Schreiber, U.: On the BV-formalism.Preprint, The n-category café, Department of Physics University of Texas at Austin (2006). MR MR2062626 (2005i:53122)
Reference: [31] Schwarz, A.: Geometry of Batalin-Vilkovisky quantization.Comm. Math. Phys. 155 (1993), no. 2, 249–260. MR MR1230027 (95f:81095) Zbl 0786.58017, MR 1230027, 10.1007/BF02097392
Reference: [32] : Felix Berezin: the life and death of the mastermind of supermathematics.World Scientific, 2007, Singapore, 2007, Andrei Losev: from Berezin integral to Batalin-Vilkovisky formalism: a mathematical physicist's point of view. MR 2406259
Reference: [33] Stasheff, J.: The (secret?) homological algebra of the Batalin-Vilkovisky approach.Secondary calculus and cohomological physics (Moscow, 1997), Contemp. Math., vol. 219, Amer. Math. Soc., Providence, RI, 1998, pp. 195–210. MR MR1640453 (2000f:18011) Zbl 0969.17012, MR 1640453
Reference: [34] Tougeron, J.-C., : Idéaux de fonctions différentiables.Springer Verlag, Berlin, Heidelberg, New York, 1972. Zbl 0251.58001, MR 0440598
Reference: [35] Voronov, A. A., Gerstenhaber, M.: Higher-order operations on the Hochschild complex.Funktsional. Anal. i Prilozhen. 29 (1995), no. 1, 1–6, 96. MR MR1328534 (96g:18006) MR 1328534, 10.1007/BF01077036
Reference: [36] Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung. Eine Einführung.Springer-Verlag, Berlin-Heidelberg, 2007. Zbl 1139.53001
Reference: [37] Xu, Ping, : Gerstenhaber algebras and BV-algebras in Poisson geometry.Comm. Math. Phys. 200 (1999), no. 3, 545–560. MR MR1675117 (2000b:17025) MR 1675117
.

Files

Files Size Format View
ArchMathRetro_045-2009-4_7.pdf 607.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo