Previous |  Up |  Next

Article

Title: Discrete limit theorems for the Laplace transform of the Riemann zeta-function (English)
Author: Kačinskaitė, R.
Author: Laurinčikas, A.
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 13
Issue: 1
Year: 2005
Pages: 19-27
Summary lang: English
.
Category: math
.
Summary: In the paper discrete limit theorems in the sense of weak convergence of probability measures on the complex plane as well as in the space of analytic functions for the Laplace transform of the Riemann zeta-function are proved. (English)
Keyword: Laplace transform
Keyword: probability measure
Keyword: Riemann zeta-function
Keyword: weak convergence
MSC: 11M06
MSC: 44A10
MSC: 60F05
idZBL: Zbl 1251.11055
idMR: MR2290415
.
Date available: 2009-12-29T09:16:26Z
Last updated: 2015-03-15
Stable URL: http://hdl.handle.net/10338.dmlcz/137468
.
Reference: [1] Atkinson F. V.: The mean value of the Riemann zeta-function., Acta Math., 81 (1949), 353–376. Zbl 0036.18603, MR 0031963, 10.1007/BF02395027
Reference: [2] Billingsley P.: Convergence of Probability Measures., Wiley, New York, 1968. Zbl 0172.21201, MR 0233396
Reference: [3] Conway J. B.: Functions of One Complex Variable., Springer-Verlag, New York, 1973. Zbl 0277.30001, MR 0447532
Reference: [4] Heyer H.: Probability Measures on Locally Compact Groups., Springer-Verlag, Berlin, 1977. Zbl 0376.60002, MR 0501241
Reference: [5] Ivič A.: The Riemann Zeta-Function., Wiley, New York, 1985. MR 0792089
Reference: [6] Jutila M.: Atkinson’s formula revisited., in: Voronoi’s Impact in Modern Science, Book 1, Proc. Inst. Math. National Acad. Sc. Ukraine, Vol. 21, P. Engel and H. Syta (Eds), Inst. Math., Kyiv, 1998, pp. 137–154. Zbl 0948.11032
Reference: [7] Laurinčikas A.: Limit theorems for the Laplace transform of the Riemann zeta-function., Integral Transf. Special Functions (to appear). MR 2242414
.

Files

Files Size Format View
ActaOstrav_13-2005-1_3.pdf 310.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo