Previous |  Up |  Next

Article

Title: On pseudoprimes having special forms and a solution of K. Szymiczek’s problem (English)
Author: Rotkiewicz, A.
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 13
Issue: 1
Year: 2005
Pages: 57-71
Summary lang: English
.
Category: math
.
Summary: We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients. (English)
Keyword: Pseudoprime
Keyword: Aurifeuillian pseudoprimes
Keyword: cyclotomic pseudoprime
Keyword: strong pseudoprime
Keyword: superpseudoprimes
MSC: 11A07
MSC: 11B99
MSC: 11Y11
idZBL: Zbl 1207.11006
idMR: MR2290419
.
Date available: 2009-12-29T09:17:29Z
Last updated: 2015-03-15
Stable URL: http://hdl.handle.net/10338.dmlcz/137472
.
Reference: [1] Alford W.R., Granville A., Pomerance C.: There are infinitely many Carmichael numbers., Ann. of Math. 140 (1994), 703–722. Zbl 0816.11005, MR 1283874, 10.2307/2118576
Reference: [2] Brillhart J., Lehmer D. H., Selfridge L., Tuckerman B., Wagstaff S. S., Jr.: Factorizations of $b^n\pm 1$, $b=2,3,5,6,7,10,11,12$ up to high powers., Contemporary Mathematics, Vol. 22, American Mathematical Society, Providence 1983.
Reference: [3] Cipolla M.: Sui numeri composti $P$, che verificano la congruenza di Fermat $\alpha ^{P-1}\equiv 1(\mathop {\rm mod}\,P)$., Annali di Matematica (3) 9 (1904), 139–160. 10.1007/BF02419871
Reference: [4] Dickson L. E.: History of the Theory of Numbers., vol. I, New York 1952.
Reference: [5] Duparc H. J. A.: Enige generalizaties van de getallen Van Poulet en Carmichael., Math. Centrum Amsterdam, Rapport Z. W. 1956-005.
Reference: [6] Erdős P.: On almost primes., Amer. Math. Monthly 57 (1950), 404–407. MR 0036259, 10.2307/2307640
Reference: [7] Granville A. J.: The prime $k$-tuplets conjecture implies that there are arbitrarity long arithmetic progressions of Carmichael numbers., (written communication of December 1995).
Reference: [8] Halberstam H., Rotkiewicz A.: A gap theorem for pseudoprimes in arithmetic progression., Acta Arith. 13 (1967/68), 395–404. MR 0225736
Reference: [9] Jeans J. A.: The converse of Fermat’s theorem., Messenger of Mathematics 27 (1898), p. 174.
Reference: [10] Keller W.: Factors of Fermat numbers and large primes of the form $k\cdot 2^n+1$., Math. Comp., 41 (1983), 661–673. MR 0717710
Reference: [11] Keller W.: Prime factors $k\cdot 2^n+1$ of Fermat numbers F_m and complete factoring status of Fermat numbers $F_m$ as of October 5., 2004 URL; http://www.prothsearch.net/fermat.html; Last modified: October 5, 2004.
Reference: [12] Kiss E.: Notes on János Bolyai’s researches in number theory., Historia Math. 26 (1999), 68–76. Zbl 0920.11001, MR 1677471, 10.1006/hmat.1998.2212
Reference: [13] Knopfmacher J., Porubsky: Topologies Related to Arithmetical Properties of Integral Domains., Expo. Math. 15 (1997), 131–148. Zbl 0883.11043, MR 1458761
Reference: [14] Korselt A.: Problème chinois., L’Interm. des Math. 6 (1899), 142-143.
Reference: [15] Kraïtchik M.: Théorie des Nombres., Gauthier – Villars, Paris 1922.
Reference: [16] Kraïtchik M.: On the factorization of $2^n\pm 1$., Scripta Math. 18 (1952), 39–52.
Reference: [17] Křižek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers., From Number Theory to Geometry, Canadian Mathematical Society, Springer 2001. MR 1866957
Reference: [18] Lucas E.: Sur la série récurrent de Fermat., Bolletino di Bibliografia e di Storia della Scienze Matematiche e Fisiche 11 (1878), 783–798.
Reference: [19] Lucas E.: Théorèmes d’arithmetique., Atti della Reale Accademia delle scienze di Torino 13 (1878), 271–284.
Reference: [20] Malo E.: Nombres qui, sans être premiers, vérifient exceptionellement une congruence de Fermat, L’Interm.. des Math. 10 (1903), 8.
Reference: [21] Mahnke D.: Leibniz and der Suche nach einer allgemeinem Primzahlgleichung., Bibliotheca Math. Vol. 13 (1913), 29–61.
Reference: [22] Needham J.: Science and Civilization in China, vol. 3: Mathematics and Sciences of the Heavens and the Earth., Cambridge 1959, p. 54, footnote A. MR 0139507
Reference: [23] Pinch Richard G. E.: The pseudoprimes up to $10^{13}$., Algorithmic Number Theory, 4th International Symposium, Proceedings ANTS-IV Leiden, The Netherlands, July 2000, Springer 2000, 456–473. MR 1850626
Reference: [24] Pomerance C.: A new lower bound for the pseudoprimes counting function., Illinois J. Math. 26 (1982), 4–9. MR 0638549
Reference: [25] Pomerance C., Selfridge J. L., Wagstaff S. S.: The pseudoprimes to $25\cdot 10^9$., Math. Comp. 35 (1980), 1009–1026. MR 0572872
Reference: [26] Ribenboim P.: The New Book of Prime Number Records., Springer, New York, 1996. Zbl 0856.11001, MR 1377060
Reference: [27] Riesel H.: Prime Numbers and Computer Methods for Factorization., Birkhäuser, Boston-Basel-Berlin, 1994. Zbl 0821.11001, MR 1292250
Reference: [28] Rotkiewicz A.: Sur les nombres premiers $p$ et $q$ tels que $pq|2^{pq}-2$., Rend. Circ. Mat. Palermo (2) 11 (1962), 280–282. Zbl 0119.03902, MR 0166137, 10.1007/BF02843874
Reference: [29] Rotkiewicz A.: Sur les nombres pseudopremiers de la forme $ax+b$., C.R. Acad. Sci. Paris 257 (1963), 2601–2604. Zbl 0116.03501, MR 0162757
Reference: [30] Rotkiewicz A., Sierpiński W.: Sur l’équation diophantienne $2^x-xy=2$., Publ. Inst. Math. (Beograd) (N.S.) 4 (18) (1964), 135–137. MR 0171745
Reference: [31] Rotkiewicz A., Schinzel A.: Sur les nombres pseudopremiers de la forme $ax^2+bxy+cy^2$., ibidem 258 (1964), 3617–3620. MR 0161828
Reference: [32] Rotkiewicz A.: Sur les formules donnant des nombres pseudopremiers., Colloq. Math. 12 (1964), 69–72. Zbl 0129.02703, MR 0166138
Reference: [33] Rotkiewicz A.: Pseudoprime Numbers and Their Generalizations., Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972, pp. i+169. Zbl 0324.10007, MR 0330034
Reference: [34] Rotkiewicz A.: The solution of W. Sierpiński’s problem., Rend. Circ. Mat. Palermo (2) 28 (1979), 62–64. Zbl 0425.10009, MR 0564551, 10.1007/BF02849586
Reference: [35] Rotkiewicz A., van der Poorten A. I.: On strong pseudoprimes in arithmetic progressions., J. Austral. Math. Soc. Ser. A 29 (1980), 316–321. Zbl 0428.10001, MR 0569519, 10.1017/S1446788700021315
Reference: [36] Sarrus F.: Démonstration de la fausseté du théorème énoncé à la page 320 du $IX^e$ volume de ce recueil., Annales de Math. Pure Appl. 10 (1819–20), 184–187. MR 1556023
Reference: [37] Schinzel A.: On primitive prime factors of $a^n-b^n$., Proc. Cambridge Philos. Soc. 58(1962), 555-562. MR 0143728
Reference: [38] Sierpiński W.: Remarque sur une hypothèse des Chinois concernant les nombres $(2^n-2)/n$., Colloq. Math. 1 (1948), 9. MR 0023256
Reference: [39] Sierpiński W.: A selection of Problems in the Theory of Numbers., Pergamon Press. New York, 1964. MR 0170843
Reference: [40] Sierpiński W.: Elementary Theory of numbers., $2^{\rm nd}$ Engl. ed. revised and enlargend by A. Schinzel, Państwowe Wydawnictwo Naukowe, Warszawa, 1988. MR 0930670
Reference: [41] Steuerwald R.: Über die Kongruenz $2^{n-1}\equiv 1(\mathop {\rm mod}\,n)$., S.-B. Math.-Nat. Kl., Bayer. Akad. Win., 1947, 177. MR 0030541
Reference: [42] Stevenhagen P.: On Aurifeuillian factorizations., Nederl. Akad. Wetensch. Indag. Math. 49 (1987), 451–468. Zbl 0635.10010, MR 0922449, 10.1016/1385-7258(87)90009-6
Reference: [43] Szymiczek K.: Note on Fermat numbers., Elem. Math. 21 (1966), 598. Zbl 0142.28904, MR 0193056
Reference: [44] Williams Hugh C.: Edouard Lucas and Primality Testing., Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22 A Wiley - Interscience Publication, New York-Chichester-Weinheim-Brisbane-Singapore-Toronto 1998. Zbl 1155.11363, MR 1632793
Reference: [45] Zsigmondy K.: Zur Theorie der Potenzreste., Monastsh. Math. 3 (1892), 265–284. MR 1546236, 10.1007/BF01692444
.

Files

Files Size Format View
ActaOstrav_13-2005-1_7.pdf 319.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo