Previous |  Up |  Next

Article

Title: Iterated digit sums, recursions and primality (English)
Author: Ericksen, Larry
Language: English
Journal: Acta Mathematica Universitatis Ostraviensis
ISSN: 1214-8148
Volume: 14
Issue: 1
Year: 2006
Pages: 27-35
.
Category: math
.
Summary: We examine the congruences and iterate the digit sums of integer sequences. We generate recursive number sequences from triple and quintuple product identities. And we use second order recursions to determine the primality of special number systems. (English)
Keyword: sum of digits
Keyword: recursive sequences
Keyword: triple product identity
Keyword: quintuple product
Keyword: primality testing
MSC: 11A07
MSC: 11A51
MSC: 11A63
MSC: 11B37
MSC: 11B39
MSC: 11B50
idZBL: Zbl 1148.11007
idMR: MR2298910
.
Date available: 2009-12-29T09:19:21Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/137480
.
Reference: [1] Bondarenko B.A.. : Generalized Pascal Triangles and Pyramids: Their Fractals., Graphs, and Applications, pp. 36-37. Santa Clara, CA: The Fibonacci Association, 1993. Zbl 0792.05001
Reference: [2] Ericksen L. : “Golden Tuple Products.”.To Appear In Applications of Fibonacci Numbers 11, W. Webb (ed.), Dordrecht: Kluwer Academic Publishers, 2006. MR 2463524
Reference: [3] Foata D., Han G.-N. : “Jacobi and Watson Identities Combinatorially Revisited.”.From a Web Resource. http://cartan.u-strasbg.fr/$\sim $gnonin/paper/pub81/html.
Reference: [4] Kang, Soon-Yi. : “A New Proof Of Winquist’s Identity.”.J. of Combin. Theory, Series A 78 (1997) 313-318. MR 1445422, 10.1006/jcta.1996.2781
Reference: [5] Ribenboim P.: “Primality Tests Based on Lucas Sequences.”.2.V In The Little Book of Bigger Primes, 2nd ed. New York: Springer-Verlag, p. 63, 2004. MR 2028675
Reference: [6] Sloane N.J.A.: Sequences $A003010$ & $A095847$.From a Web Resource. http://www.research.att.com/ njas/sequences/.
Reference: [7] Sloane N.J.A.: $A001175$ “Pisano Number.”.From a Web Resource. http://www.research.att.com/ njas/sequences/.
Reference: [8] Vajda S. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications., pp. 177-178. Chichester: Ellis Horwood, 1989. MR 1015938
Reference: [9] Weisstein E.W. : “Delannoy Number.”.From a Web Resource. http://mathworld.wolfram.com/DelannoyNumber.html
Reference: [10] Weisstein E.W.. : “Lucas-Lehmer Test.”.From a Web Resource. http://mathworld.wolfram.com/Lucas-LehmerTest.html
Reference: [11] Wong C.K., Maddox T.W. : “A Generalized Pascal’s Triangle.”.The Fibonacci Quarterly 13:2 (1975) 134-136. MR 0360297
.

Files

Files Size Format View
ActaOstrav_14-2006-1_5.pdf 265.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo