Previous |  Up |  Next


$f$-density; asymptotic density; weighted density; strong quotient base; $(R)$-density
In this paper it is discus a relation between $f$-density and $(R)$-density. A generalization of Šalát's result concerning this relation in the case of asymptotic density is proved.
[1] Mišík L.: Sets of positive integers with prescribed values of densities. Math. Slovaca 52 (2002), 289-296 MR 1936334
[2] Mišík L., Tóth J. T.: Logarithmic density of sequence of integers and density of its ratio set. Journal de Theorie des Nombers de Bordeaux 15 (2003), 309-318. MR 2019018
[3] Strauch O., Tóth J. T.: Asymptotic density of A c N and density of the ratio set R(A). Acta Arith. 87 (1998), 67-78. MR 1659159
[4] Strauch O., Tóth J. T.: Corrigendum to Theorem 5 of the paper "Asymptotic density of ACN and density of the ratio set R(A)". Acta Arith. 87 (1998), 67-78, Acta Arith. 103.2 (2002), 191-200. MR 1904872
[5] Šalát T.: On ratio sets of sets of natural numbers. Acta Arith. 15 (1969), 273-278. MR 0242756
[6] Šalát T.: Quotientbasen und (R)-dichte Mengen. Acta Arith. 19 (1971), 63-78. MR 0292788 | Zbl 0218.10071
Partner of
EuDML logo