Previous |  Up |  Next

Article

Keywords:
Banach algebras; arithmetic functions; weighted norms; inversion; general Dirichlet series; Euler products
Summary:
For infinite discrete additive semigroups $X\subset [0,\infty )$ we study normed algebras of arithmetic functions $g\colon X\rightarrow \mathbb {C}$ endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for $X=\log {\mathbb {N}}$. This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.
References:
[1] Delange H.: Sur les fonctions arithmétiques multiplicatives. Ann. Scient. École Norm. Sup., $3^{\rm e}$ série, 78 (1961), 273–304. MR 0169829 | Zbl 0234.10043
[2] Edwards D.A.: On absolutely convergent Dirichlet series. Proc. Amer. Math. Soc. 8 (1957), 1067–1074. DOI 10.1090/S0002-9939-1957-0096086-1 | MR 0096086
[3] Elliott P.D.T.A.: A mean-value theorem for multiplicative functions. Proc. London Math. Soc. 31 (1975), 418–438. DOI 10.1112/plms/s3-31.4.418 | MR 0387220 | Zbl 0319.10055
[4] Gelfand I. M.: Über absolut konvergente trigonometrische Reihen und Integrale. Rec. Math. (Mat. Sbornik) N. S. vol. 9 (1941), 51–66. MR 0004727 | Zbl 0024.32302
[5] Halász G.: Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen. Acta Math. Sci. Hung. 19 (1968), 365–403. DOI 10.1007/BF01894515 | MR 0230694
[6] Heppner E., W. Schwarz: Benachbarte multiplikative Funktionen. Studies in Pure Mathematics (To the Memory of Paul Turán). Budapest 1983, 323–336. MR 0820232 | Zbl 0518.10050
[7] Hewitt E., J.H. Williamson: Note on absolutely convergent Dirichlet series. Proc. Amer. Math. Soc. 8 (1957), 863–868. DOI 10.1090/S0002-9939-1957-0090680-X | MR 0090680 | Zbl 0081.06804
[8] Indlekofer K.-H.: A mean-value theorem for multiplicative functions. Math. Z. 172 (1980), 255–271. DOI 10.1007/BF01215089 | MR 0581443 | Zbl 0416.10035
[9] Lucht L.G.: Über benachbarte multiplikative Funktionen. Arch. Math. 30, 40–48 (1978). DOI 10.1007/BF01226017 | MR 0480396 | Zbl 0374.10029
[10] Lucht L.G.: An application of Banach algebra techniques to multiplicative functions. Math. Z. 214 (1993), 287–295. DOI 10.1007/BF02572405 | MR 1240890 | Zbl 0805.11067
[11] Lucht L.G.: Weighted relationship theorems and Ramanujan expansions. Acta Arith. 70 (1995), 25–42. MR 1318760 | Zbl 0818.11005
[12] Lucht L.G., K. Reifenrath: Weighted Wiener-Lévy theorems. Analytic Number Theory. Proceedings of a Conference in Honor of Heini Halberstam, Urbana-Champaign, 1995. Vol. 2, Birkhäuser, Boston 1996, 607–619. MR 1409381
[13] Knopfmacher J.: Abstract Analytic Number Theory. 2nd ed., Dover Publ., New York 1975. MR 0419383 | Zbl 0322.10001
[14] Ramanujan S.: On certain trigonometrical sums and their applications in the theory of numbers. Transact. Cambridge Philos. Soc. 22 (1918), 259–276.
[15] Rudin W.: Real and Complex Analysis. McGraw-Hill, London 1970.
[16] Schwarz W.: Eine weitere Bemerkung über multiplikative Funktionen. Coll. Math. 28 (1973), 81–89. MR 0327695 | Zbl 0249.10039
[17] Spilker J., W. Schwarz: Wiener-Lévy-Sätze für absolut konvergente Reihen. Arch. Math. 32, 267–275 (1979). DOI 10.1007/BF01238499 | MR 0541625 | Zbl 0394.42004
[18] Schwarz W., J. Spilker: Arithmetical Functions. Cambridge University Press, Cambridge, 1994. MR 1274248 | Zbl 0807.11001
[19] Wiener N.: Tauberian Theorems. Annals of Math. 33 (1932), 1–100. DOI 10.2307/1968102 | MR 1503035 | Zbl 0005.25003
[20] Wirsing E.: Das asymptotische Verhalten von Summen über multiplikative Funktionen. Math. Ann. 143 (1961), 75–102. DOI 10.1007/BF01351892 | MR 0131389 | Zbl 0104.04201
[21] Wirsing E.: Das asymptotische Verhalten von Summen über multiplikative Funktionen II. Acta Math. Acad. Hung. 18 (1967), 411–467. DOI 10.1007/BF02280301 | MR 0223318 | Zbl 0165.05901
Partner of
EuDML logo