Previous |  Up |  Next


cusp forms; exponential sums; Ramanujan tau function; analytic computations
The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.
[1] PARI/GP, Version @vers. 2006. available from
[2] Apostol, T. M.: Modular functions and Dirichlet series in number theory. volume 41 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990 MR 1027834 | Zbl 0697.10023
[3] Ernvall-Hytönen, A.-M.: A relation between Fourier coefficients of holomorphic cusp forms and exponential sums. to appear in Publications de l’Institut Mathematique (Beograd)
[4] Ernvall-Hytönen, A.-M., Karppinen, K.: On short exponential sums involving Fourier coefficients of holomorphic cusp forms. IntṀath. Res. Not. IMRN, (10) : Art. ID. rnn022, 44, 2008 MR 2429240 | Zbl 1247.11106
[5] Ernvall-Hytönen, A.-M.: An improvement on the upper bound of exponential sums of holomorphic cusp forms. submitted
[6] Ivić, A.: Large values of certain number-theoretic error terms. Acta Arith., 56(2) : 135–159, 1990 MR 1075641
[7] Jutila, M.: On exponential sums involving the Ramanujan function. Proc. Indian Acad. Sci. Math. Sci., 97(1-3) : 157–166 (1988), 1987 MR 0983611
[8] Koecher, M., Krieg, A.: Elliptische Funktionen und Modulformen. Springer-Verlag, Berlin, 1998 MR 1711085 | Zbl 0895.11001
[9] Rankin, R. A.: Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions ii. The order of Fourier coefficients of integral modular forms. Proc. Cambridge Philos. Soc., 35 : 357–372, 1939
[10] Wilton, J. R.: A note on Ramanujan’s arithmetical function $\tau (n)$. Proc. Cambridge Philos. Soc., 25(II) : 121–129, 1929
Partner of
EuDML logo