Previous |  Up |  Next

Article

Title: Nedávné poznatky o čísle $\pi$ (Czech)
Title: Recent knowledge of the number $\pi$ (English)
Author: Netuka, Ivan
Author: Veselý, Jiří
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 43
Issue: 3
Year: 1998
Pages: 217-236
.
Category: math
.
MSC: 11-01
MSC: 11Y16
MSC: 11Y60
idZBL: Zbl 0936.11001
.
Date available: 2010-12-11T16:43:52Z
Last updated: 2012-08-25
Stable URL: http://hdl.handle.net/10338.dmlcz/137587
.
Reference: [1] Adamchik, V., Wagon, S.: $\pi $: A 2000-year-old search changes direction.Mathematica in Education and Research 5 (1996), 11–19 (text článku lze nalézt v elektronické podobě na URL adrese <http://www.wolfram.com/~victor/articles/pi/pi.html>).
Reference: [2] Adamchik, V., Wagon, S.: A simple formula for $\pi $.Amer. Math. Monthly 104 (1997), 852–855. Zbl 0886.11073, MR 1479991
Reference: [3] Bailey, D. H.: A polynomial time, numerically stable integer relation algorithm.NAS Technical Report Server (RNR-91-032, December 1991).
Reference: [4] Bailey, D. H., Borwein, P. B., Plouffe, S.: On the rapid computation of various polylogarithmic constants.Math. Comp. 66 (1997), 903–913. Zbl 0879.11073, MR 1415794
Reference: [5] Bailey, D. H., Ferguson, H. R. P.: Numerical results on relations between fundamental constants using a new algorithm.Math. Comp. 53 (1989), 649–656 (*). Zbl 0687.10002, MR 0979934
Reference: [6] Bailey, D. H., Plouffe, S.: Recognizing numerical constants.Organic mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20 (1977), Amer. Math. Soc., Providence, RI, 73–88 (preprint z r. 1995). MR 1483914
Reference: [7] Bailey, D. H., Borwein, J. M., Borwein, P. B., Plouffe, S.: The quest for Pi.Math. Intelligencer 19 (1997), no. 1, 50–57. Zbl 0878.11002, MR 1439159
Reference: [8] Beckmann, P.: Historie čísla $\pi $.Academia, Praha 1998 (překlad 5. vydání z r. 1982).
Reference: [9] Bellard, F.: .<http://www-stud.enst.fr/~bellard/pi-challenge/index.html> a dále <http://www-stud.enst.fr/~bellard/pi-challenge/announce220997.html>.
Reference: [10] Berggren, L., Borwein, J. M., Borwein, P. B.: $\pi $: A source book.Springer, New York 1997. Zbl 0876.11001, MR 1467531
Reference: [11] Borwein, J. M., Borwein, P. B.: The arithmetic-geometric mean and fast computation of elementary functions.SIAM Rev. 26 (1984), 351–366 (*). Zbl 0557.65009, MR 0750454
Reference: [12] Borwein, J. M., Borwein, P. B.: Pi and the AGM: A study in analytic number theory and computational complexity.John Wiley & Sons, New York 1987. Zbl 0611.10001, MR 0877728
Reference: [13] Borwein, J. M., Borwein, P. B.: Ramanujan and Pi.Science and applications; Supercomputing 88, Vol. II (1988), 112–117 (*).
Reference: [14] Borwein, J. M., Borwein, P. B., Dilcher, K.: $\pi $, Euler numbers and asymptotic expansion.Amer. Math. Monthly 96 (1989), 681–687 (*). MR 1019148
Reference: [15] Borwein, J. M., Borwein, P. B., Girgensohn, R., Parnes, S.: Making sense of experimental mathematics.Math. Intelligencer 18 (1996), no. 4, 12–18 (preprint s názvem “Experimental mathematics: a discussion” z r. 1995 je k dispozici na serveru CECM, viz [23]). Zbl 0874.00027, MR 1413248
Reference: [16] Borwein, J. M., Borwein, P. B., Bailey, D. H.: Ramanujan, modular equations, and approximations to Pi or How to compute one bilion digits of Pi.Amer. Math. Monthly 96 (1989), 201–219 (*). MR 0991866
Reference: [17] Brent, R. P.: Fast multiple-precision evaluation of elementary functions.J. Assoc. Comput. Mach. 23 (1976), 242–251 (*). Zbl 0324.65018, MR 0395314
Reference: [18] Castellanos, D.: The ubiquitous $\pi $.Math. Magazin 61 (1988), 67–98 a 149–163. Zbl 0654.10002, MR 0934824
Reference: [19] Goldstine, H. H.: A history of numerical analysis from the 16th through the 19th century.Springer, New York 1977. Zbl 0402.01005, MR 0484905
Reference: [20] Hančl, J.: Two proofs of transcendency of $\pi $ and e.Czech. Math. Journal 35 (1985), 543–549. MR 0809040
Reference: [21] Iwamoto, Y.: A proof that $\pi ^2$ is irrational.J. Osaka Inst. Sci. Tech. 1 (1949), 147–148. MR 0037863
Reference: [22] Jarník, V.: Diferenciální počet I.Academia, Praha 1984 (6. vydání).
Reference: [23] Kanada, Y.: .<ftp://www.cc.u-tokyo.ac.jp/readme.our_latest_record> (lze také nalézt na adrese <http://cecm.sfu.ca/personal/jborwein/Kanada_50b.html>). Zbl 1052.68668
Reference: [24] Kořínek, V.: Základy algebry.NČSAV, Praha 1953. MR 0075914
Reference: [25] Knopp, K.: Theorie und Anwendungen der unendlichen Reihen.Springer, Berlin 1924. MR 0028430
Reference: [26] Niven, I.: A simple proof that $\pi $ is irrational.Bull. Amer. Math. Soc. 53 (1947), 509 (*). Zbl 0037.31404, MR 0021013
Reference: [27] Novák, B.: O sedmém Hilbertově problému.Pokroky MFA 17 (1972), 245–256.
Reference: [28] Novák, B.: A remark to a paper of J. F. Koksma.Nieuw Arch. voor Wiskunde 23 (1975), 195–197. MR 0406941
Reference: [29] Novák, B.: Vybrané kapitoly z teorie čísel.SPN, Praha 1972.
Reference: [30] Plouffe, S.: .<http://www.lacim.uqam.ca/ploufe/Simon/results.html>. Zbl 1010.11071
Reference: [31] Rabinowitz, S. D., Wagon, S.: A spigot algorithm for the digits of $\pi $.Amer. Math. Monthly 103 (1995), 195–203. Zbl 0853.11102, MR 1317842
Reference: [32] Ramanujan, S.: Modular equations and approximations to $\pi $.Quart. J. Math. 45 (1914), 350–372.
Reference: [33] Salamin, E.: Computation of $\pi $ using arithmetic-geometric mean.Math. Comp. 30 (1976), 565–570 (*). Zbl 0345.10003, MR 0404124
Reference: [34] Taylor, S. J.: Pravidelnost náhodnosti.Pokroky MFA 25 (1980), 28–34 (překlad).
Reference: [35] Veselý, J.: $\pi $ aneb 3,14159...Učitel matematiky 3 (15), 4 (16) (1995), 1–10 a 1–13.
Reference: [36] Veselý, J.: Matematická analýza pro učitele.Matfyzpress, vydavatelství MFF UK, Praha 1997.
Reference: [37] Wagon, S.: Is Pi normal?.Math. Inteligencer 7 (1985), no. 3, 65–67 (*). Zbl 0565.10002, MR 0795541
Reference: [38] Williams, R.: .<http://www.ccsf.caltech.edu/~roy/pi.formulas.html>. Zbl 1200.57005
Reference: [39] Borwein, J. M.: Brouwer-Heyting sequence converge.Math. Intelligencer 20 (1998), no. 1, 14–15. MR 1601815
.

Files

Files Size Format View
PokrokyMFA_43-1998-3_5.pdf 2.618Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo