Title:
|
O Fermatových číslech (Czech) |
Title:
|
On Fermat numbers (English) |
Author:
|
Křížek, Michal |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
40 |
Issue:
|
5 |
Year:
|
1995 |
Pages:
|
243-253 |
. |
Category:
|
math |
. |
MSC:
|
11-04 |
MSC:
|
11A51 |
MSC:
|
11Y05 |
idZBL:
|
Zbl 0863.11003 |
idMR:
|
MR1386144 |
. |
Date available:
|
2010-12-11T14:00:05Z |
Last updated:
|
2012-08-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/138304 |
. |
Reference:
|
[1] Brent, R. P.: Factorization of the eleventh Fermat number.Abstracts Amer. Math. Soc. 10 (1989), 176–177. |
Reference:
|
[2] Brent, R. P., Pollard, J. M.: Factorization of the eighth Fermat number.Math. Comp. 36 (1981), 627–630. Zbl 0476.10007, MR 0606520 |
Reference:
|
[3] Brillhart, J., Lehmer, D. H., Selfridge, J. L., Tuckerman, B., Wagstaff, S. S.: Factorization of $b^n\pm 1$, $b=2,3,5,6,7,10,11,12$ up to high powers.Contemporary Math. vol. 22, Amer. Math. Soc., Providence 1988. MR 0996414 |
Reference:
|
[4] Crandall, R., Doenias, J., Norrie, C., Young, J.: The twenty-second Fermat number is composite.Math. Comp. 64 (1995), 863–868. Zbl 0823.11073, MR 1277765 |
Reference:
|
[5] Dickson, L. E.: History of the theory of numbers: Divisibility and primality.Carnegie Inst. of Washington 1919. |
Reference:
|
[6] Gostin, G. B., McLaughlin, P. B., Jr., : Six new factors of Fermat numbers.Math. Comp. 38 (1982), 645–649. Zbl 0486.10005, MR 0645680 |
Reference:
|
[7] Hardy, G. H., Wright, E. M.: An introduction to the theory of numbers.Clarendon Press, Oxford 1945. |
Reference:
|
[8] Keller, W.: Factors of Fermat numbers and large primes of the form $k\cdot 2^n+1$.Math. Comp. 41 (1983), 661–673. MR 0717710 |
Reference:
|
[9] Keller, W.: Factors of Fermat numbers and large primes of the form $k\cdot 2^n+1$. II.Preprint Univ. of Hamburg (1992), 1-40. |
Reference:
|
[10] Křížek, M., Chleboun, J.: A note on factorization of the Fermat numbers and their factors of the form $3h2^n+1$.Math. Bohem. 119 (1994), 437–445. MR 1316595 |
Reference:
|
[11] Lenstra, H. W.: Factoring integers with elliptic curves.Ann. of Math. 126 (1987), 649–673. Zbl 0629.10006, MR 0916721 |
Reference:
|
[12] Lenstra, A. K., Lenstra, H. W., Jr., Manasse, M. S., Pollard, J. M.: The factorization of the ninth Fermat number.Math. Comp. 61 (1993), 319–349. Zbl 0792.11055, MR 1182953 |
Reference:
|
[13] Lenstra, H. W., Pomerance, C.: A rigorous time bound for factoring integers.J. Amer. Math. Soc. 5 (1992), 483–516. Zbl 0770.11057, MR 1137100 |
Reference:
|
[14] Ligh, S., Jones, P.: Generalized Fermat and Mersenne numbers.Fibonacci Quart. 20 (1982), 12–16 . Zbl 0477.10017, MR 0660752 |
Reference:
|
[15] Montgomery, P. L.: New solutions of $a^{p-1}\equiv 1 (\operatorname{mod} p)^2$.Math. Comp. 61 (1993), 361–363. MR 1182246 |
Reference:
|
[16] Morrison, M. A., Brillhart, J.: A method of factoring and factorization of $F_7$.Math. Comp. 29 (1975), 183–205. MR 0371800 |
Reference:
|
[17] Pollard, J. M.: Theorems on factorization and primality testing.Math. Proc. Cambridge Philos. Soc. 76 (1974), 521–528. Zbl 0294.10005, MR 0354514 |
Reference:
|
[18] Pudlák, P.: O složitosti.PMFA 33 (1988), 20–34. |
Reference:
|
[19] Reisel, H.: Prime numbers and computer methods for factorization.Birkhäuser, Boston-Basel-Stuttgart 1985. MR 0897531 |
Reference:
|
[20] Robinson, R. M.: The converse of Fermat’s theorem.Amer. Math. Monthly 64 (1957), 703–710. Zbl 0079.06303, MR 0098057 |
Reference:
|
[21] Schroeder, M. R.: Number theory in science and communication.Springer-Verlag 1990. |
Reference:
|
[22] Sierpiński, W.: Teorija liczb.Warszawa 1950. |
Reference:
|
[23] Skula, L.: Některé historické aspekty Fermatova problému.PMFA 39 (1994), 318–330. |
Reference:
|
[24] Stewart, I.: Geometry finds factors faster.Nature 325 (1987), 199. |
Reference:
|
[25] Šalát, T.: O dokonalých číslach.PMFA IX (1964), 1–13. |
Reference:
|
[26] Šofr, B.: Euklidovské geometrické konštrukcie.ALFA, Bratislava 1976. |
Reference:
|
[27] Young, J., Buell, D. A.: The twentieth Fermat number is composite.Math. Comp. 50 (1988), 261–263. Zbl 0633.10001, MR 0917833 |
Reference:
|
[28] Williams, H. C.: How was $F_6$ factored?.Math. Comp. 61 (1993), 463–474. MR 1182248 |
. |