Previous |  Up |  Next

Article

Title: Sophus Lie a harmonie v matematické fyzice (k 150. výročí narození) (Czech)
Title: Sophus Lie and harmony in mathematical physics, on the 150th anniversary of his birth (English)
Author: Ibragimov, Nail H.
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 39
Issue: 4
Year: 1994
Pages: 192-208
.
Category: physics
.
MSC: 01A55
MSC: 01A60
MSC: 17B81
MSC: 22-03
MSC: 22E70
MSC: 35A30
MSC: 35Q72
idZBL: Zbl 0830.01013
idMR: MR1309410
Note: From The Mathematical Intelligencer 16 (1994), No. 1, 20-28. translated and annotated O. Kowalski. (English)
Note: Z The Mathematical Intelligencer 16 (1994), č. 1, 20-28. přeložil a upravil O. Kowalski. (Czech)
.
Date available: 2010-12-11T12:22:51Z
Last updated: 2012-08-25
Stable URL: http://hdl.handle.net/10338.dmlcz/139454
.
Reference: [1] Ames, W. F.: Nonlinear Partial Differential Equations in Engineering,.Vols. I and II. New York: Academic Press (1965, 1972). Zbl 0176.39701, MR 0210342
Reference: [2] Anderson, R. L., Ibragimov, N. H.: Lie–Bäcklund Transformations in Applications.Philadelphia: SIAM (1979). Zbl 0447.58001, MR 0520395
Reference: [3] Berest, Yu.: Construction of fundamental solutions for Huygens equations as invariant solutions.Dokl. Akad. Nauk SSSR, 317 (4), 786–789 (1991). Zbl 0789.35093, MR 1121582
Reference: [4] Bianchi, L.: Lezioni sulla teoria dei gruppi continui finiti di transformazioni.Pisa: Spoerri (1918).
Reference: [5] Birkhoff, G.: Hydrodynamics.Princeton, NJ: Princeton University Press (1950, 1960). Zbl 0041.53903
Reference: [6] Bluman, G. W., Kumei, S.: Symmetries and Differential Equations.New York: Springer-Verlag (1989). Zbl 0698.35001, MR 1006433
Reference: [7] Hawkins, T.: Jacobi and the birth of Lie’s theory of groups.Arch. History Exact Sciences 42 (3), 187–278 (1991). Zbl 0767.01019, MR 1124967
Reference: [8] Hille, E.: Functional Analysis and Semigroups.New York: Amer. Math. Soc. (1948), preface. MR 0025077
Reference: [9] Ibragimov, N. H.: Transformation groups Applied to Mathematical Physics.Dordrecht: D. Reidel (1985). Zbl 0558.53040, MR 0785566
Reference: [10] Ibragimov, N. H.: Primer on the Group Analysis.Moscow: Znanie (1989). MR 1063482
Reference: [11] Ibragimov, N. H.: Essays in the Group Analysis of Ordinary Differential Equations.Moscow: Znanie (1991). MR 1125762
Reference: [12] Ibragimov, N. H.: Group analysis of ordinary differential equations and new observations in mathematical physics.Uspechi Mat. Nauk, to appear. MR 1279026
Reference: [13] Klein, F.: Theorie der Transformationsgruppen B. III, Pervoe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897 goda.Kazan: Tipo-litografiya Imperatorskogo Universiteta (1898), pp. 10–28.
Reference: [14] Laplace, P. S.: Mécanique céleste.T. I. Livre 2, Chap. III (1799).
Reference: [15] Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichungen.Arch. for. Math. VI (1881).
Reference: [16] Lie, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten.Arch. Math. VIII, 187–453 (1883).
Reference: [17] Lie, S.: Theorie der Transformationsgruppen, Bd. 1. (Bearbeitet unter Mitwirkung von F. Engel).Leipzig: B. G. Teubner (1888).
Reference: [18] Lie, S.: Die infinitesimalen Berührungstransformationen der Mechanik.Leipz. Ber. (1889).
Reference: [19] Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und herausgegeben von Dr. G. Scheffers).Leipzig: B. G. Teubner (1891).
Reference: [20] Lie, S.: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung.Leipz. Ber. I, 53–128 (1895).
Reference: [21] Lie, S.: Gesammelte Abhandlungen, Bd. 1–6.Leipzig–Oslo.
Reference: [22] Noether, M.: Sophus Lie.Math. Annalen 53, 1–4 (1990). MR 2348319
Reference: [23] Olver, P. J.: Applications of Lie groups to Differential Equations.New York: Springer-Verlag (1986). Zbl 0588.22001, MR 0836734
Reference: [24] Ovsjanikov, L. V.: Group properties of differential equations.Novosibirsk: USSR Academy of Science, Siberian Branch (1962).
Reference: [25] Ovsjanikov, L. V.: Group Analysis of Differential Equations.Boston: Academic Press (1982). MR 0668703
Reference: [26] Petrov, A. Z.: Einstein Spaces.Oxford: Pergamon Press (1969). Zbl 0174.28305, MR 0244912
Reference: [27] Polischuk, E. M.: Sophus Lie.Leningrad: Nauka (1983). MR 0742142
Reference: [28] Puknachev, V. V.: Invariant solutions of Navier–Stokes equations describing free-boundary motions.Dokl. Akad. Nauk SSSR 20 (2), 302–305 (1972).
Reference: [29] Purkert, W.: Zum Verhältnis von Sophus Lie und Friedrich Engel.Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifswald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2, 29–34 (1984). Zbl 0558.01020, MR 0836342
Reference: [30] Riemann, G. F. B.: Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite.Abh. K. Ges. Wiss. Göttingen 8 (1860).
Reference: [31] Sedov, L. I.: Similarity and Dimensional Methods in Mechanics, 4th ed.New York: Academic Press (1959). MR 0108122
Reference: [32] Stephani, H.: Differential Equations: Their Solution Using Symmetries.Cambridge: Cambridge University Press (1989). Zbl 0704.34001, MR 1041800
.

Files

Files Size Format View
PokrokyMFA_39-1994-4_3.pdf 2.678Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo