Title:
|
Sophus Lie a harmonie v matematické fyzice (k 150. výročí narození) (Czech) |
Title:
|
Sophus Lie and harmony in mathematical physics, on the 150th anniversary of his birth (English) |
Author:
|
Ibragimov, Nail H. |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
39 |
Issue:
|
4 |
Year:
|
1994 |
Pages:
|
192-208 |
. |
Category:
|
physics |
. |
MSC:
|
01A55 |
MSC:
|
01A60 |
MSC:
|
17B81 |
MSC:
|
22-03 |
MSC:
|
22E70 |
MSC:
|
35A30 |
MSC:
|
35Q72 |
idZBL:
|
Zbl 0830.01013 |
idMR:
|
MR1309410 |
Note:
|
From The Mathematical Intelligencer 16 (1994), No. 1, 20-28. translated and annotated O. Kowalski. (English) |
Note:
|
Z The Mathematical Intelligencer 16 (1994), č. 1, 20-28. přeložil a upravil O. Kowalski. (Czech) |
. |
Date available:
|
2010-12-11T12:22:51Z |
Last updated:
|
2012-08-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/139454 |
. |
Reference:
|
[1] Ames, W. F.: Nonlinear Partial Differential Equations in Engineering,.Vols. I and II. New York: Academic Press (1965, 1972). Zbl 0176.39701, MR 0210342 |
Reference:
|
[2] Anderson, R. L., Ibragimov, N. H.: Lie–Bäcklund Transformations in Applications.Philadelphia: SIAM (1979). Zbl 0447.58001, MR 0520395 |
Reference:
|
[3] Berest, Yu.: Construction of fundamental solutions for Huygens equations as invariant solutions.Dokl. Akad. Nauk SSSR, 317 (4), 786–789 (1991). Zbl 0789.35093, MR 1121582 |
Reference:
|
[4] Bianchi, L.: Lezioni sulla teoria dei gruppi continui finiti di transformazioni.Pisa: Spoerri (1918). |
Reference:
|
[5] Birkhoff, G.: Hydrodynamics.Princeton, NJ: Princeton University Press (1950, 1960). Zbl 0041.53903 |
Reference:
|
[6] Bluman, G. W., Kumei, S.: Symmetries and Differential Equations.New York: Springer-Verlag (1989). Zbl 0698.35001, MR 1006433 |
Reference:
|
[7] Hawkins, T.: Jacobi and the birth of Lie’s theory of groups.Arch. History Exact Sciences 42 (3), 187–278 (1991). Zbl 0767.01019, MR 1124967 |
Reference:
|
[8] Hille, E.: Functional Analysis and Semigroups.New York: Amer. Math. Soc. (1948), preface. MR 0025077 |
Reference:
|
[9] Ibragimov, N. H.: Transformation groups Applied to Mathematical Physics.Dordrecht: D. Reidel (1985). Zbl 0558.53040, MR 0785566 |
Reference:
|
[10] Ibragimov, N. H.: Primer on the Group Analysis.Moscow: Znanie (1989). MR 1063482 |
Reference:
|
[11] Ibragimov, N. H.: Essays in the Group Analysis of Ordinary Differential Equations.Moscow: Znanie (1991). MR 1125762 |
Reference:
|
[12] Ibragimov, N. H.: Group analysis of ordinary differential equations and new observations in mathematical physics.Uspechi Mat. Nauk, to appear. MR 1279026 |
Reference:
|
[13] Klein, F.: Theorie der Transformationsgruppen B. III, Pervoe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897 goda.Kazan: Tipo-litografiya Imperatorskogo Universiteta (1898), pp. 10–28. |
Reference:
|
[14] Laplace, P. S.: Mécanique céleste.T. I. Livre 2, Chap. III (1799). |
Reference:
|
[15] Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichungen.Arch. for. Math. VI (1881). |
Reference:
|
[16] Lie, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten.Arch. Math. VIII, 187–453 (1883). |
Reference:
|
[17] Lie, S.: Theorie der Transformationsgruppen, Bd. 1. (Bearbeitet unter Mitwirkung von F. Engel).Leipzig: B. G. Teubner (1888). |
Reference:
|
[18] Lie, S.: Die infinitesimalen Berührungstransformationen der Mechanik.Leipz. Ber. (1889). |
Reference:
|
[19] Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und herausgegeben von Dr. G. Scheffers).Leipzig: B. G. Teubner (1891). |
Reference:
|
[20] Lie, S.: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung.Leipz. Ber. I, 53–128 (1895). |
Reference:
|
[21] Lie, S.: Gesammelte Abhandlungen, Bd. 1–6.Leipzig–Oslo. |
Reference:
|
[22] Noether, M.: Sophus Lie.Math. Annalen 53, 1–4 (1990). MR 2348319 |
Reference:
|
[23] Olver, P. J.: Applications of Lie groups to Differential Equations.New York: Springer-Verlag (1986). Zbl 0588.22001, MR 0836734 |
Reference:
|
[24] Ovsjanikov, L. V.: Group properties of differential equations.Novosibirsk: USSR Academy of Science, Siberian Branch (1962). |
Reference:
|
[25] Ovsjanikov, L. V.: Group Analysis of Differential Equations.Boston: Academic Press (1982). MR 0668703 |
Reference:
|
[26] Petrov, A. Z.: Einstein Spaces.Oxford: Pergamon Press (1969). Zbl 0174.28305, MR 0244912 |
Reference:
|
[27] Polischuk, E. M.: Sophus Lie.Leningrad: Nauka (1983). MR 0742142 |
Reference:
|
[28] Puknachev, V. V.: Invariant solutions of Navier–Stokes equations describing free-boundary motions.Dokl. Akad. Nauk SSSR 20 (2), 302–305 (1972). |
Reference:
|
[29] Purkert, W.: Zum Verhältnis von Sophus Lie und Friedrich Engel.Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifswald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2, 29–34 (1984). Zbl 0558.01020, MR 0836342 |
Reference:
|
[30] Riemann, G. F. B.: Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite.Abh. K. Ges. Wiss. Göttingen 8 (1860). |
Reference:
|
[31] Sedov, L. I.: Similarity and Dimensional Methods in Mechanics, 4th ed.New York: Academic Press (1959). MR 0108122 |
Reference:
|
[32] Stephani, H.: Differential Equations: Their Solution Using Symmetries.Cambridge: Cambridge University Press (1989). Zbl 0704.34001, MR 1041800 |
. |