Previous |  Up |  Next

Article

Title: The risk-sensitive Poisson equation for a communicating Markov chain on a denumerable state space (English)
Author: Cavazos-Cadena, Rolando
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 5
Year: 2009
Pages: 716-736
Summary lang: English
.
Category: math
.
Summary: This work concerns a discrete-time Markov chain with time-invariant transition mechanism and denumerable state space, which is endowed with a nonnegative cost function with finite support. The performance of the chain is measured by the (long-run) risk-sensitive average cost and, assuming that the state space is communicating, the existence of a solution to the risk-sensitive Poisson equation is established, a result that holds even for transient chains. Also, a sufficient criterion ensuring that the functional part of a solution is uniquely determined up to an additive constant is provided, and an example is given to show that the uniqueness result may fail when that criterion is not satisfied. (English)
Keyword: possibly transient Markov chains
Keyword: discounted approach
Keyword: first return time
Keyword: uniqueness of solutions to the multiplicative Poisson equation
MSC: 60J05
MSC: 90C40
MSC: 93E20
idZBL: Zbl 1190.93104
idMR: MR2599108
.
Date available: 2010-06-02T19:10:14Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/140041
.
Reference: [1] A. Arapostathis, V. K. Borkar, E. Fernández-Gaucherand, M. K. Gosh, and S. I. Marcus: Discrete-time controlled Markov processes with average cost criteria: a survey.SIAM J. Control Optim. 31 (1993), 282–334. MR 1205981
Reference: [2] A. Brau-Rojas, R. Cavazos-Cadena, and E. Fernández-Gaucherand: Controlled Markov chains with a risk-sensitive criteria: some counterexamples In: Proc.37th IEEE Conference on Decision and Control, Tempa 1998, pp. 1853–1858.
Reference: [3] R. Cavazos–Cadena and E. Fernández-Gaucherand: Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations and optimal solutions.Math. Methods Oper. Res. 43 (1999), 121–139. MR 1687362
Reference: [4] R. Cavazos–Cadena and E. Fernández–Gaucherand: Risk-sensitive control in communicating average Markov decision chains.In: Modelling Uncertainty: An examination of Stochastic Theory, Methods and Applications (M. Dror, P. L’Ecuyer, and F. Szidarovsky, eds.), Kluwer, Boston 2002, pp. 525–544.
Reference: [5] R. Cavazos–Cadena and D. Hernández-Hernández: Solution to the risk-sensitive average cost optimality equation in communicating Markov decision chains with finite state space: An alternative approach.Math. Methods Oper. Res. 56 (2003), 473–479. MR 1953028
Reference: [6] R. Cavazos–Cadena: Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space.Math. Methods Oper. Res. 57 (2003), 263–285. MR 1973378
Reference: [7] R. Cavazos–Cadena and D. Hernández-Hernández: A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains.Ann. Appl. Probab. 15 2005, 175–212. MR 2115041
Reference: [8] R. Cavazos–Cadena and D. Hernández-Hernández: Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space.Systems Control Lett. 58 (2009), 254–258. MR 2510639
Reference: [9] G. B. Di Masi and L. Stettner: Risk-sensitive control of discrete time Markov processes with infinite horizon.SIAM J. Control Optim. 38 (1999), 61–78. MR 1740607
Reference: [10] W. H. Fleming and W. M. McEneany: Risk-sensitive control on an infinite horizon.SIAM J. Control Optim. 33 (1995), 1881–1915. MR 1358100
Reference: [11] D. Hernández-Hernández and S. I. Marcus: Risk-sensitive control of Markov processes in countable state space.Systems Control Lett. 29 (1996), 147–155. MR 1422212
Reference: [12] : .O. Hernández-Lerma: Adaptive Markov Control Processes Springer, New York 1988. MR 0995463
Reference: [13] R. A. Howard and J. E. Matheson: Risk-sensitive Markov decision processes.Management Sci. 18 (1972), 356–369. MR 0292497
Reference: [14] D. H. Jacobson: Optimal stochastic linear systems with exponential performance criteria and their relation to stochastic differential games.IEEE Trans. Automat. Control 18 (1973), 124–131. MR 0441523
Reference: [15] S. C. Jaquette: Markov decison processes with a new optimality criterion: discrete time.Ann. Statist. 1 (1973), 496–505. MR 0378839
Reference: [16] S. C. Jaquette: A utility criterion for Markov decision processes.Management Sci. 23 (1976), 43–49. Zbl 0337.90053, MR 0439037
Reference: [17] A. Jaśkiewicz: Average optimality for risk sensitive control with general state space.Ann. Appl. Probab. 17 (2007), 654–675. MR 2308338
Reference: [18] M. Loève: Probability Theory I.Springer, New York 1980. MR 0651017
Reference: [19] M. L. Puterman: Markov Decision Processes.Wiley, New York 1994. Zbl 1184.90170, MR 1270015
Reference: [20] E. Seneta: Nonnegative Matrices.Springer, New York 1980.
Reference: [21] K. Sladký: Growth rates and average optimality in risk-sensitive Markov decision chains.Kybernetika 44 (2008), 205–226. MR 2428220
Reference: [22] K. Sladký and R. Montes-de-Oca: Risk-sensitive average optimality in Markov decision chains Raul.In: Oper. Res. Proc. 2007 (Selected Papers of the Internat. Conference on Operations Research 2007, Saarbruecken, J. Kalcsics and S. Nickel, eds.), Springer-Verlag, Berlin – Heidelberg 2008, pp. 69–74.
.

Files

Files Size Format View
Kybernetika_45-2009-5_3.pdf 910.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo