Title:
|
Optimal quantization for the one–dimensional uniform distribution with Rényi-$\alpha$-entropy constraints (English) |
Author:
|
Kreitmeier, Wolfgang |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
46 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
96-113 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We establish the optimal quantization problem for probabilities under constrained Rényi-$\alpha$-entropy of the quantizers. We determine the optimal quantizers and the optimal quantization error of one-dimensional uniform distributions including the known special cases $\alpha = 0$ (restricted codebook size) and $\alpha = 1$ (restricted Shannon entropy). (English) |
Keyword:
|
optimal quantization |
Keyword:
|
uniform distribution |
Keyword:
|
Rényi-$\alpha $-entropy |
MSC:
|
60E99 |
MSC:
|
62B10 |
MSC:
|
62H30 |
MSC:
|
94A17 |
MSC:
|
94A29 |
idZBL:
|
Zbl 1187.94018 |
idMR:
|
MR2666897 |
. |
Date available:
|
2010-06-02T19:48:00Z |
Last updated:
|
2013-09-21 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140047 |
. |
Reference:
|
[1] J. Aczél and Z. Daróczy: On Measures of Information and Their Characterizations.(Mathematics in Science and Engineering Vol. 115.) Academic Press, London 1975. MR 0689178 |
Reference:
|
[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty: Nonlinear Programming, Theory and Algorithms.Wiley, New York 1993. MR 2218478 |
Reference:
|
[3] C. Beck and F. Schlögl: Thermodynamics of Chaotic Systems.Cambridge University Press, Cambridge 1993. MR 1237638 |
Reference:
|
[4] M. Behara: Additive and Nonadditive Measures of Entropy.Wiley, New Delhi 1990. Zbl 0752.94005, MR 1106848 |
Reference:
|
[5] J. C. Fort and G. Pagès: Asymptotics of optimal quantizers for some scalar distributions.J. Comput. Appl. Math. 146 (2002), 253–275. MR 1925959 |
Reference:
|
[6] A. Gersho and R. M. Gray: Vector Quantization and Signal Compression.Kluwer, Boston 1992. |
Reference:
|
[7] S. Graf and H. Luschgy: The quantization of the Cantor distribution.Math. Nachr. 183 (1997), 113–133. MR 1434978 |
Reference:
|
[8] S. Graf and H. Luschgy: Foundations of Quantization for Probability Distributions.(Lecture Notes in Computer Science 1730.) Springer, Berlin 2000. MR 1764176 |
Reference:
|
[9] R. M. Gray and D. Neuhoff: Quantization.IEEE Trans. Inform. Theory 44 (1998), 2325–2383. MR 1658787 |
Reference:
|
[10] M. Grendar: Entropy and effective support size.Entropy 8 (2006), 169–174. Zbl 1135.94316, MR 2276249 |
Reference:
|
[11] A. György and T. Linder: Optimal entropy-constrained scalar quantization of a uniform source.IEEE Trans. Inform. Theory 46 (2000), 2704–2711. MR 1806836 |
Reference:
|
[12] A. György and T. Linder: On the structure of optimal entropy-constrained scalar quantizers.IEEE Trans. Inform. Theory 48 (2002), 416–427. MR 1891255 |
Reference:
|
[13] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities.Second edition. Cambridge University Press, Cambridge 1959. |
Reference:
|
[14] P. Harremoës and F. Topsøe: Inequalities between entropy and index of coincidence derived from information diagrams.IEEE Trans. Inform. Theory 47 (2001), 2944–2960. MR 1872852 |
Reference:
|
[15] M. Kesseböhmer and S. Zhu: Stability of quantization dimension and quantization for homogeneous Cantor measure.Math. Nachr. 280 (2007), 866–881. MR 2326060 |
Reference:
|
[16] W. Kreitmeier: Optimal quantization for dyadic homogeneous Cantor distributions.Math. Nachr. 281 (2008), 1307–1327. MR 2442708 |
Reference:
|
[17] F. Liese, D. Morales, and I. Vajda: Asymptotically sufficient partitions and quantizations.IEEE Trans. Inform. Theory 52 (2006), 5599–5606. MR 2300722 |
Reference:
|
[18] K. Pötzelberger and H. Strasser: Clustering and quantization by MSP-partitions.Statist. Decisions 19 (2001), 331–371. MR 1884124 |
. |