Previous |  Up |  Next

Article

Title: Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions (English)
Author: Rozgonyi, Szabolcs
Author: Hangos, Katalin M.
Author: Szederkényi, Gábor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 1
Year: 2010
Pages: 19-37
Summary lang: English
.
Category: math
.
Summary: In this article a method is presented to find systematically the domain of attraction (DOA) of hybrid non-linear systems. It has already been shown that there exists a sequence of special kind of Lyapunov functions $V_n$ in a rational functional form approximating a maximal Lyapunov function $V_M$ that can be used to find an estimation for the DOA. Based on this idea, an improved method has been developed and implemented in a Mathematica-package to find such Lyapunov functions $V_n$ for a class of hybrid (piecewise non-linear) systems, where the dynamics is continuous on the boundary of the different regimes in the state space. In addition, a computationally feasible method is proposed to estimate the DOA using a maximal fitting hypersphere. (English)
Keyword: maximal Lyapunov functions
Keyword: domain of attraction
Keyword: hybrid systems
MSC: 34A34
MSC: 34A38
MSC: 34D20
MSC: 34D23
MSC: 34D35
MSC: 37B25
MSC: 70K20
MSC: 93D20
idZBL: Zbl 1194.34018
idMR: MR2666892
.
Date available: 2010-06-02T19:39:30Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140048
.
Reference: [1] St. Balint, E. Kaslik, A. M. Balint, and A. Grigis: Methods for determination and approximation of the domain of attraction in the case of autonomous discrete dynamical systems.Adv. Difference Equations 2006,doi:10.1155/ADE/2006/23939. MR 2209672
Reference: [2] N. P. Bhatia and G. P. Szegő: Stability Theory of Dynamical Systems.Springer-Verlag, Berlin 1970. MR 0289890
Reference: [3] M. S. Branicky: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.IEEE Trans. Automat. Control 43 (1998), 475–482. Zbl 0904.93036, MR 1617575
Reference: [4] G. Chesi: Estimating the domain of attraction for uncertain polynomial systems.Automatica 40 (2004), 11, 1981–1986. Zbl 1067.93055, MR 2156007
Reference: [5] C. Chesi: Domain of attraction: estimates for non-polynomial systems via LMIs.In: Proc. 16th IFAC World Congress on Automatic Control 2005.
Reference: [6] C. Chesi: Estimating the domain of attraction via union of continuous families of Lyapunov estimates.Systems Control Lett. 56 (2007), 4, 326–333. Zbl 1109.37012, MR 2301671
Reference: [7] G. Chesi, A. Garulli, A. Tesi, and A. Vicino: Solving quadratic distance problems: an LMI-based approach.IEEE Trans. Automat. Control 48 (2003), 2, 200–212. MR 1957317
Reference: [8] E. A. Coddington and N. Levinson: Theory of Ordinary Differential Equations.McGill-Hill Book Company, New York – Toronto – London 1955. MR 0069338
Reference: [9] L. T. Grujić, J.-P. Richard, P. Borne, and J.-C. Gentina: Stability Domains.CRC Press, Boca Raton, London, New York, Washington D.C., 2003.
Reference: [10] O. Hachicho and B. Tibken: Estimating domains of attraction of a class of nonlinear dynamical systems with LMI methods based on the theory of moments.In: Proc. 41st IEEE Conference on Decision and Control 2002.
Reference: [11] W. Hahn: Stability of Motion.Springer-Verlag, New York 1967. Zbl 0189.38503, MR 0223668
Reference: [12] E. Kaslik, A. M. Balint, and St. Balint: Methods for Determination and Approximation of the Domain of Attraction.Research Report 2004.
Reference: [13] H. W. Knobloch and F. Kappel: Gewöhnlich Differentialgleichungen.Teubner Verlag, Stuttgart 1974. MR 0591708
Reference: [14] J. P. LaSalle: The Stability of Dynamical Systems.SIAM, Philadelphia 1976. Zbl 0364.93002, MR 0481301
Reference: [15] J. P. LaSalle and S. Lefschetz: Stability by Lyapunov’s Direct Method with Applications.Academic Press, New York 1961. MR 0132876
Reference: [16] S.-H. Lee and J.-T. Lim: Stability Analysis of Switched Systems with Impulse Effects.Research Report, Korea Advanced Institute of Science and Technology 1999.
Reference: [17] Z. G. Li, C. Y. Wen, and and Y. C. Soh: A unified approach for stability analysis of impulsive hybrid systems.In: Proc. 38th IEEE Conference on Decision and Control 1999.
Reference: [18] D. Liberzon: Switching in Systems and Control.Birkhäuser, Boston 2003. Zbl 1036.93001, MR 1987806
Reference: [19] M. Malisoff and F. Mazenc: Constructions of Strict Lyapunov Functions for Discrete Time and Hybrid Time-Varying Systems.Research Report 2007. MR 2298983
Reference: [20] S. Pettersson and B. Lennartson: LMI for Stability and Robustness of Hybrid Systems.Research Report I-96/005, Chalmers University of Technology, 1996.
Reference: [21] S. Pettersson and B. Lennartson: Exponential Stability Of Hybrid Systems Using Piecewise Quadratic Lyapunov Functions Resulting In LMIs.Research Report, Chalmers University of Technology 1999.
Reference: [22] Sz. Rozgonyi, K. M. Hangos, and G. Szederkényi: Improved Estimation Method of Region of Stability for Nonlinear Autonomous Systems.Research Report, Systems and Control Laboratory, Computer and Automation Research Institute 2006.
Reference: [23] H. Schumacher and A. van der Schaft: An Introduction to Hybrid Dynamical Systems.Springer-Verlag, Berlin 1999. MR 1734638
Reference: [24] B. van der Pol: A theory of the amplitude of free and forced triode vibrations.Radio Rev. 1 (1920), 701–710.
Reference: [25] A. Vanelli and M. Vidyasagar: Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems.Automatica 21 (1985), 69–80. MR 0777932
Reference: [26] J. Vigo-Aguiar, J. Martin-Vaquero, and H. Ramos: Exponential fitting BDF-Runge-Kutta algorithms.Comput. Phys. Comm. 178 (2008), 15–34. MR 2578138
Reference: [27] D. Wu and Z. Wang: A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach.Comput. Phys. Comm. 174 (2006), 447–463.
Reference: [28] T. Yoshizawa: Stability theory by Lyapunov’s second method.Math. Soc. Japan 9 (1966), 223. MR 0208086
Reference: [29] M. Zefran and J. W. Burdick: Stabilization of systems with changing dynamics.In: HSCC 1998, pp. 400–415.
Reference: [30] V. I. Zubov: Methods of A. M. Lyapunov and Their Application.Noordhoff 1964. Zbl 0115.30204, MR 0179428
.

Files

Files Size Format View
Kybernetika_46-2010-1_2.pdf 789.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo