Previous |  Up |  Next

Article

Title: A value based on marginal contributions for multi–alternative games with restricted coalitions (English)
Author: Masuya, Satoshi
Author: Inuiguchi, Masahiro
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 1
Year: 2010
Pages: 50-67
Summary lang: English
.
Category: math
.
Summary: This paper deals with cooperative games with $n$ players and $r$ alternatives which are called multi-alternative games. In the conventional multi-alternative games initiated by Bolger, each player can choose any alternative with equal possibilities. In actual social life, there exist situations in which players have some restrictions on their choice of alternatives. Considering such situations, we study restricted multi-alternative games. A value for a given game is proposed. (English)
Keyword: game theory
Keyword: cooperative game
Keyword: multi-alternative game
Keyword: restricted game
Keyword: Banzhaf value
MSC: 91A06
MSC: 91A12
idZBL: Zbl 1187.91016
idMR: MR2666894
.
Date available: 2010-06-02T19:41:21Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140051
.
Reference: [1] J. F. Banzhaf: Weighted voting doesn’t work: a mathematical analysis.Rutgers Law Review 19 (1965), 317–343.
Reference: [2] J. M. Bilbao, E. Lebrón, and N. Jiménez: Probabilistic values on convex geometries.Ann. Oper. Res. 84 (1998), 79–95. MR 1672378
Reference: [3] E. M. Bolger: Power indices for multicandidate voting games.Internat. J. Game Theory 15 (1986), 175–186. Zbl 0611.90106, MR 0857012
Reference: [4] E. M. Bolger: A value for games with $n$ players and $r$ alternatives.Internat. J. Game Theory 22 (1993), 319–334. Zbl 0793.90101, MR 1251183
Reference: [5] E. M. Bolger: A consistent value for games with $n$ players and $r$ alternatives.Internat. J. Game Theory 29 (2000), 93–99. Zbl 1034.91001, MR 1745874
Reference: [6] E. Lehrer: An axiomatization of the Banzhaf value.Internat J. Game Theory 17 (1988), 89–99. Zbl 0651.90097, MR 0944144
Reference: [7] R. B. Myerson: Graphs and cooperation in games.Math. Oper. Res. 2 (1977), 225–229. Zbl 0402.90106, MR 0459661
Reference: [8] R. Ono: Values for multialternative games and multilinear extensions.In: Power Indices and Coalition Formation (M. Holler and G. Owen, eds.), Kluwer Academic Publishers, Dordrecht 2001, pp. 63–86.
Reference: [9] L. S. Shapley: A value for $n$-person games.In: Contributions to the Theory of Games II (H. Kuhn and A. Tucker, eds.), Princeton 1953, pp. 307–317. Zbl 0701.90097, MR 0053477
Reference: [10] M. Tsurumi, M. Inuiguchi, and T. Tanino: A solution for fuzzy generalized multi-alternative games.In: The 2006 NOLTA Proc. 2006, pp. 95–98.
.

Files

Files Size Format View
Kybernetika_46-2010-1_4.pdf 524.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo