[1] S. H.Chen, J. Liu, and J. A. Lu: Tracking control and synchronization of chaotic system based upon sampled-data feedback. Chinese Phys. 11(2002), 233–237.
[2] E.Ott, C.Grebogi and J.A.Yorke:
Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196–1199.
MR 1041523
[3] L. M. Pecora and T. L. Carrol:
Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 8, 821–824.
MR 1038263
[4] B. R. Andrievskii and A. L. Fradkov:
Control of chaos: Methods and Applications. I. Methods. Autom. Telemekh. 5 (2003), 3–45.
MR 2093398
[5] B. R. Andrievskii and A. L. Fradkov:
Control of chaos: Methods and Applications. II. Appl. Autom. Telemekh. 4 (2004), 3–34.
MR 2095138
[7] C. T. H. Baker, J. M. Ford, and N. J. Ford:
Bifurcation in approximate solutions of stochastic delay differential equations. Internat J. Bifurcation and Chaos 14(2004), 9, 2999–3021.
MR 2099159
[8] H. Crauel and F. Flandoli:
Additive noise destroys a pitchfork bifurcation. J. Dynam. Diff. Equations 10 (1998), 2, 259–274.
MR 1623013
[9] J. K. Hale:
Theory of functional differential equations. Appl. Math. Sci., Vol.3, Springer-Verlag, Berlin 1977, Chap. 1, pp. 17–18.
MR 0390425 |
Zbl 1092.34500
[10] D. M. Li, J. A. Lu, X. Q. Wu, and G. R. Chen:
Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323 (2006), 844–853.
MR 2260147
[11] J. H. Lü and G. R. Chen:
A new chaotic attractor conined. Internat. J. Bifurcation and Chaos 12(2002), 3, 659–661.
MR 1894886
[12] X. R. Mao:
Stochastic Differential Equations and Their Applications. Horwood Publ. 1997, Chap. 5, pp. 179–183.
Zbl 0892.60057
[13] J. H. Lü, G. R. Chen, D. Z. Chen, and S. Čelikovský:
Bridge the gap between the Lorenz system and the Chen system. Internat. J. Bifurcation and Chaos 12 (2002), 12, 2917–2926.
MR 1956411
[14] V. I. Oseledets:
A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197–231.
Zbl 0236.93034
[15] C. Zhang, W. Lin, J. Zhou:
Complete and generalized synchronization in a class of noise perturbed chaotic systems. Chaos 17 (2007), 023106-1.
MR 2340609
[16] L. Zhang and C. J. Zhang:
Control a class of chaotic systems by a simple stochastic method. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, Special Issue on Software Engineering and Complex Networks 14 (2007), S6, 210–214.
MR 2378808
[17] W. Q. Zhu and H. L. Huang: Stochastic stability of quasi-non-integrable Hamiltonian systems. J. Sound and Vibration 218 (1998), 769–789.