Title:
|
Octonionic Cayley spinors and $E_6$ (English) |
Author:
|
Dray, Tevian |
Author:
|
Manogue, Corinne A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
193-207 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group $E_6$, and of its subgroups. We are therefore led to a description of $E_6$ in terms of $3\times 3$ octonionic matrices, generalizing previous results in the $2\times 2$ case. Our treatment naturally includes a description of several important subgroups of $E_6$, notably $G_2$, $F_4$, and (the double cover of) $SO(9,1)$. An interpretation of the actions of these groups on the squares of 3-component Cayley spinors is suggested. (English) |
Keyword:
|
octonions |
Keyword:
|
$E_6$ |
Keyword:
|
exceptional Lie groups |
Keyword:
|
Dirac equation |
MSC:
|
17A35 |
MSC:
|
17C90 |
MSC:
|
22E70 |
idZBL:
|
Zbl 1224.17006 |
idMR:
|
MR2682473 |
. |
Date available:
|
2010-05-21T12:43:13Z |
Last updated:
|
2014-07-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140099 |
. |
Reference:
|
[1] Baez J. C.: The octonions.Bull. Amer. Math. Soc. 39 (2002), 145–205. Zbl 1026.17001, MR 1886087, 10.1090/S0273-0979-01-00934-X |
Reference:
|
[2] Cartan É.: Le principe de dualité et la théorie des groupes simple et semi-simples.Bull. Sci. Math. 49 (1925), 361–374. |
Reference:
|
[3] Conway J.H., Smith D.A.: On Quaternions and Octonions.A.K. Peters, Natick, MA, 2003. Zbl 1098.17001, MR 1957212 |
Reference:
|
[4] Dray T., Manogue C.A.: The exceptional Jordan eigenvalue problem.Internat. J. Theoret. Phys. 38 (1999), 2901–2916; {\tt ({math-ph/9910004})}. Zbl 0951.15008, MR 1764984, 10.1023/A:1026699830361 |
Reference:
|
[5] Dray T., Manogue C.A.: Quaternionic spin.in Clifford Algebras and their Applications in Mathematical Physics, (R. Abłamowicz and B. Fauser, eds.), Birkhäuser, Boston, 2000, pp. 29–46; {\tt ({hep-th/9910010})}. Zbl 1160.81396, MR 1783522 |
Reference:
|
[6] Fairlie D.B., Corrigan E.: Private communication.1986. |
Reference:
|
[7] Freudenthal H.: Lie groups in the foundations of geometry.Adv. Math. 1 (1964), 145–190. Zbl 0125.10003, MR 0170974, 10.1016/0001-8708(65)90038-1 |
Reference:
|
[8] Harvey F.R.: Spinors and Calibrations.Academic Press, Boston, 1990. Zbl 0694.53002, MR 1045637 |
Reference:
|
[9] Jacobson N.: Some Groups of Transformations defined by Jordan Algebras, II.J. Reine Angew. Math. 204 (1960), 74–98. Zbl 0142.26401, MR 0159849 |
Reference:
|
[10] Manogue C.A., Dray T.: Dimensional reduction.Mod. Phys. Lett. A14 (1999), 99–103; {\tt ({hep-th/9807044})}. MR 1674805, 10.1142/S0217732399000134 |
Reference:
|
[11] Manogue C.A., Dray T.: Octonionic Möbius transformations.Int. J. Mod. Phys. A14 (1999), 1243–1255; {\tt ({math-ph/9905024})}. MR 1703958 |
Reference:
|
[12] Manogue C.A., Dray T.: Octonions, $E_6$, and particle physics.in Proceedings of QUANTUM (York, 2008), J. Phys.: Conference Series (JPCS)(to appear). |
Reference:
|
[13] Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras.J. Math. Phys. 34 (1993), 3746–3767; {\tt ({hep-th/9302044})}. Zbl 0797.53075, MR 1230549, 10.1063/1.530056 |
Reference:
|
[14] Paige L.J.: Jordan algebras.in Studies in Modern Algebra (A.A. Albert, ed.), Prentice Hall, Englewood Cliffs, NJ, 1963, pp. 144–186. Zbl 0196.30803 |
Reference:
|
[15] Ramond P.: Introduction to exceptional Lie groups and algebras.Caltech preprint CALT-68-577, 1976. |
Reference:
|
[16] Schafer R.D.: An Introduction to Nonassociative Algebras.Academic Press, New York, 1966 (reprinted by Dover Publications, 1995). Zbl 0145.25601, MR 0210757 |
Reference:
|
[17] Schray J.: Octonions and supersymmetry.PhD thesis, Oregon State University, 1994. |
Reference:
|
[18] Schray J.: The general classical solution of the superparticle.Class. Quant. Grav. 13 (1996), 27–38; {\tt ({hep-th/9407045})}. Zbl 0999.81500, MR 1371012, 10.1088/0264-9381/13/1/004 |
Reference:
|
[19] Sudbery A.: Division algebras, (pseudo)orthogonal groups and spinors.J. Phys. A17 (1984), 939–955. Zbl 0544.22010, MR 0743176 |
Reference:
|
[20] Wangberg A.: The structure of $E_6$.PhD thesis, Oregon State University, 2007, {\tt ({arXiv:0711.3447})}. MR 2711269 |
Reference:
|
[21] Wangberg A., Dray T.: Visualizing Lie subalgebras using root and weight diagrams.Loci 2, February 2009; {\tt ({mathdl.maa.org/mathDL/23/?pa=content&sa=viewDocument&nodeId=3287})}. |
. |