Previous |  Up |  Next

Article

Title: Octonionic Cayley spinors and $E_6$ (English)
Author: Dray, Tevian
Author: Manogue, Corinne A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 193-207
Summary lang: English
.
Category: math
.
Summary: Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group $E_6$, and of its subgroups. We are therefore led to a description of $E_6$ in terms of $3\times 3$ octonionic matrices, generalizing previous results in the $2\times 2$ case. Our treatment naturally includes a description of several important subgroups of $E_6$, notably $G_2$, $F_4$, and (the double cover of) $SO(9,1)$. An interpretation of the actions of these groups on the squares of 3-component Cayley spinors is suggested. (English)
Keyword: octonions
Keyword: $E_6$
Keyword: exceptional Lie groups
Keyword: Dirac equation
MSC: 17A35
MSC: 17C90
MSC: 22E70
idZBL: Zbl 1224.17006
idMR: MR2682473
.
Date available: 2010-05-21T12:43:13Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140099
.
Reference: [1] Baez J. C.: The octonions.Bull. Amer. Math. Soc. 39 (2002), 145–205. Zbl 1026.17001, MR 1886087, 10.1090/S0273-0979-01-00934-X
Reference: [2] Cartan É.: Le principe de dualité et la théorie des groupes simple et semi-simples.Bull. Sci. Math. 49 (1925), 361–374.
Reference: [3] Conway J.H., Smith D.A.: On Quaternions and Octonions.A.K. Peters, Natick, MA, 2003. Zbl 1098.17001, MR 1957212
Reference: [4] Dray T., Manogue C.A.: The exceptional Jordan eigenvalue problem.Internat. J. Theoret. Phys. 38 (1999), 2901–2916; {\tt ({math-ph/9910004})}. Zbl 0951.15008, MR 1764984, 10.1023/A:1026699830361
Reference: [5] Dray T., Manogue C.A.: Quaternionic spin.in Clifford Algebras and their Applications in Mathematical Physics, (R. Abłamowicz and B. Fauser, eds.), Birkhäuser, Boston, 2000, pp. 29–46; {\tt ({hep-th/9910010})}. Zbl 1160.81396, MR 1783522
Reference: [6] Fairlie D.B., Corrigan E.: Private communication.1986.
Reference: [7] Freudenthal H.: Lie groups in the foundations of geometry.Adv. Math. 1 (1964), 145–190. Zbl 0125.10003, MR 0170974, 10.1016/0001-8708(65)90038-1
Reference: [8] Harvey F.R.: Spinors and Calibrations.Academic Press, Boston, 1990. Zbl 0694.53002, MR 1045637
Reference: [9] Jacobson N.: Some Groups of Transformations defined by Jordan Algebras, II.J. Reine Angew. Math. 204 (1960), 74–98. Zbl 0142.26401, MR 0159849
Reference: [10] Manogue C.A., Dray T.: Dimensional reduction.Mod. Phys. Lett. A14 (1999), 99–103; {\tt ({hep-th/9807044})}. MR 1674805, 10.1142/S0217732399000134
Reference: [11] Manogue C.A., Dray T.: Octonionic Möbius transformations.Int. J. Mod. Phys. A14 (1999), 1243–1255; {\tt ({math-ph/9905024})}. MR 1703958
Reference: [12] Manogue C.A., Dray T.: Octonions, $E_6$, and particle physics.in Proceedings of QUANTUM (York, 2008), J. Phys.: Conference Series (JPCS)(to appear).
Reference: [13] Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras.J. Math. Phys. 34 (1993), 3746–3767; {\tt ({hep-th/9302044})}. Zbl 0797.53075, MR 1230549, 10.1063/1.530056
Reference: [14] Paige L.J.: Jordan algebras.in Studies in Modern Algebra (A.A. Albert, ed.), Prentice Hall, Englewood Cliffs, NJ, 1963, pp. 144–186. Zbl 0196.30803
Reference: [15] Ramond P.: Introduction to exceptional Lie groups and algebras.Caltech preprint CALT-68-577, 1976.
Reference: [16] Schafer R.D.: An Introduction to Nonassociative Algebras.Academic Press, New York, 1966 (reprinted by Dover Publications, 1995). Zbl 0145.25601, MR 0210757
Reference: [17] Schray J.: Octonions and supersymmetry.PhD thesis, Oregon State University, 1994.
Reference: [18] Schray J.: The general classical solution of the superparticle.Class. Quant. Grav. 13 (1996), 27–38; {\tt ({hep-th/9407045})}. Zbl 0999.81500, MR 1371012, 10.1088/0264-9381/13/1/004
Reference: [19] Sudbery A.: Division algebras, (pseudo)orthogonal groups and spinors.J. Phys. A17 (1984), 939–955. Zbl 0544.22010, MR 0743176
Reference: [20] Wangberg A.: The structure of $E_6$.PhD thesis, Oregon State University, 2007, {\tt ({arXiv:0711.3447})}. MR 2711269
Reference: [21] Wangberg A., Dray T.: Visualizing Lie subalgebras using root and weight diagrams.Loci 2, February 2009; {\tt ({mathdl.maa.org/mathDL/23/?pa=content&sa=viewDocument&nodeId=3287})}.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_5.pdf 327.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo