Previous |  Up |  Next

Article

Title: Bicrossproduct Hopf quasigroups (English)
Author: Klim, Jennifer
Author: Majid, Shahn
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 287-304
Summary lang: English
.
Category: math
.
Summary: We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup $kM {\triangleright\blacktriangleleft} k(G)$ from every group $X$ with a finite subgroup $G\subset X$ and IP quasigroup transversal $M\subset X$ subject to certain conditions. We identify the octonions quasigroup $G_{\mathbb O}$ as transversal in an order 128 group $X$ with subgroup $\mathbb Z_2^3$ and hence obtain a Hopf quasigroup $kG_{\mathbb O}{{>\blacktriangleleft}} k(\mathbb Z_2^3)$ as a particular case of our construction. (English)
Keyword: IP loop
Keyword: octonions
Keyword: quantum group
Keyword: quasiHopf algebra
Keyword: monoidal category
Keyword: finite group
Keyword: coset
MSC: 16S36
MSC: 16W50
MSC: 81R50
idZBL: Zbl 1224.81014
idMR: MR2682482
.
Date available: 2010-05-21T12:49:12Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140108
.
Reference: [1] Albuquerque H., Majid S: Quasialgebra structure of the octonions.J. Algebra 220 (1999), 188–224. Zbl 0999.17006, MR 1713433, 10.1006/jabr.1998.7850
Reference: [2] Beggs E.J.: Making non-trivially associated tensor categories from left coset representatives.J. Pure and Applied Algebra 177 (2003), 5–41. Zbl 1037.18004, MR 1948835, 10.1016/S0022-4049(02)00119-6
Reference: [3] Drinfeld V.G.: Quasi-Hopf algebras.Leningrad Math. J. 1 (1990), 1419–1457. MR 1047964
Reference: [4] Klim J., Majid S.: Hopf quasigroups and the algebraic $7$-sphere.J. Algebra(to appear). MR 2629701
Reference: [5] Majid S.: Foundations of Quantum Group Theory.Cambridge University Press, Cambridge, 1995. Zbl 0857.17009, MR 1381692
Reference: [6] Perez-Izquierdo J., Shestakov I.P.: An envelope for Malcev algebras.J. Algebra 272 (2004), 379–393. Zbl 1077.17027, MR 2029038, 10.1016/S0021-8693(03)00389-2
Reference: [7] Smith J.D.H.: Introduction to Quasigroups and their Representations.Taylor & Francis, 2006. Zbl 1122.20035, MR 2268350
Reference: [8] Zhu Y.: Hecke algebras and representation ring of Hopf algebras.AMS/IP Stud. Adv. Math. 20, Amer. Math. Soc., Providence, RI, 2001, pp. 219–227. Zbl 1064.20011, MR 1830177
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_14.pdf 283.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo