Title:
|
Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops (English) |
Author:
|
Lawson, Jimmie |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
319-331 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb R^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^{-1}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline wz)^{-1}$ for the Möbius loop multiplication in the unit complex disk). (English) |
Keyword:
|
Bruck loop |
Keyword:
|
Clifford algebra |
Keyword:
|
gyrogroup |
Keyword:
|
Möbius transformations |
Keyword:
|
Vahlen matrices |
Keyword:
|
involutive group |
MSC:
|
15A66 |
MSC:
|
20N05 |
MSC:
|
51B10 |
idZBL:
|
Zbl 1211.20064 |
idMR:
|
MR2682484 |
. |
Date available:
|
2010-05-21T12:50:34Z |
Last updated:
|
2014-07-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140110 |
. |
Reference:
|
[1] Ahlfors L.V.: Möbius transformations and Clifford numbers.in Differential Geometry and Complex Analysis (I. Chavel and H.M. Farkas, Eds.), Springer, Berlin, 1985, pp. 65–73. Zbl 0569.30040, MR 0780036 |
Reference:
|
[2] Foguel T., Ungar A.A.: The involutory decomposition of groups into twisted subgroups and subgroups.J. Group Theory 3 (2000), 27–46. MR 1736515, 10.1515/jgth.2000.003 |
Reference:
|
[3] Glauberman G.: On loops of odd order I.J. Algebra 1 (1964), 374–396. MR 0175991, 10.1016/0021-8693(64)90017-1 |
Reference:
|
[4] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393–414. Zbl 0155.03901, MR 0222198, 10.1016/0021-8693(68)90050-1 |
Reference:
|
[5] Karzel H.: Recent developments on absolute geometries and algebraization by $K$-loops.Discrete Mahematics 208/209 (1999), 387–409. Zbl 0941.51002, MR 1725545, 10.1016/S0012-365X(99)00085-0 |
Reference:
|
[6] Kiechle H.: Theory of $K$-Loops.Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl 0997.20059, MR 1899153, 10.1007/b83276 |
Reference:
|
[7] Kinyon M.: Global left loop structures on spheres.Comment. Math. Univ. Carolin. 41 (2000), 325–346. Zbl 1041.20044, MR 1780875 |
Reference:
|
[8] Kinyon M., Jones O.: Loops and semidirect products.Comm. Algebra 28 (2000), 4137–4164. Zbl 0974.20049, MR 1772003, 10.1080/00927870008827079 |
Reference:
|
[9] Kreuzer A.: Beispiele endlicher und unendlicher $K$-loops.Results Math. 23 (1993), 355–362. Zbl 0788.20036, MR 1215220, 10.1007/BF03322307 |
Reference:
|
[10] Karzel H., Wefelscheid H.: Groups with an involutory antiautomorphism and $K$-loops; application to space-time-world and hyperbolic geometry.Results Math. 23 (1993), 338–354. Zbl 0788.20034, MR 1215219, 10.1007/BF03322306 |
Reference:
|
[11] Ungar A.A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity.World Scientific Publishing Co., Hackensack, NJ, 2008. Zbl 1147.83004, MR 2169236 |
Reference:
|
[12] Vahlen K.Th.: Über Bewegungen und komplexe Zahlen.Math. Ann. 55 (1902), p. 585. MR 1511164, 10.1007/BF01450354 |
Reference:
|
[13] Waterman P.L.: Möbius transformations in several dimensions.Advances in Math. 101 (1993), 87–113. Zbl 0793.15019, MR 1239454, 10.1006/aima.1993.1043 |
. |