Previous |  Up |  Next

Article

Title: Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops (English)
Author: Lawson, Jimmie
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 2
Year: 2010
Pages: 319-331
Summary lang: English
.
Category: math
.
Summary: In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb R^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^{-1}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline wz)^{-1}$ for the Möbius loop multiplication in the unit complex disk). (English)
Keyword: Bruck loop
Keyword: Clifford algebra
Keyword: gyrogroup
Keyword: Möbius transformations
Keyword: Vahlen matrices
Keyword: involutive group
MSC: 15A66
MSC: 20N05
MSC: 51B10
idZBL: Zbl 1211.20064
idMR: MR2682484
.
Date available: 2010-05-21T12:50:34Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140110
.
Reference: [1] Ahlfors L.V.: Möbius transformations and Clifford numbers.in Differential Geometry and Complex Analysis (I. Chavel and H.M. Farkas, Eds.), Springer, Berlin, 1985, pp. 65–73. Zbl 0569.30040, MR 0780036
Reference: [2] Foguel T., Ungar A.A.: The involutory decomposition of groups into twisted subgroups and subgroups.J. Group Theory 3 (2000), 27–46. MR 1736515, 10.1515/jgth.2000.003
Reference: [3] Glauberman G.: On loops of odd order I.J. Algebra 1 (1964), 374–396. MR 0175991, 10.1016/0021-8693(64)90017-1
Reference: [4] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393–414. Zbl 0155.03901, MR 0222198, 10.1016/0021-8693(68)90050-1
Reference: [5] Karzel H.: Recent developments on absolute geometries and algebraization by $K$-loops.Discrete Mahematics 208/209 (1999), 387–409. Zbl 0941.51002, MR 1725545, 10.1016/S0012-365X(99)00085-0
Reference: [6] Kiechle H.: Theory of $K$-Loops.Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl 0997.20059, MR 1899153, 10.1007/b83276
Reference: [7] Kinyon M.: Global left loop structures on spheres.Comment. Math. Univ. Carolin. 41 (2000), 325–346. Zbl 1041.20044, MR 1780875
Reference: [8] Kinyon M., Jones O.: Loops and semidirect products.Comm. Algebra 28 (2000), 4137–4164. Zbl 0974.20049, MR 1772003, 10.1080/00927870008827079
Reference: [9] Kreuzer A.: Beispiele endlicher und unendlicher $K$-loops.Results Math. 23 (1993), 355–362. Zbl 0788.20036, MR 1215220, 10.1007/BF03322307
Reference: [10] Karzel H., Wefelscheid H.: Groups with an involutory antiautomorphism and $K$-loops; application to space-time-world and hyperbolic geometry.Results Math. 23 (1993), 338–354. Zbl 0788.20034, MR 1215219, 10.1007/BF03322306
Reference: [11] Ungar A.A.: Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity.World Scientific Publishing Co., Hackensack, NJ, 2008. Zbl 1147.83004, MR 2169236
Reference: [12] Vahlen K.Th.: Über Bewegungen und komplexe Zahlen.Math. Ann. 55 (1902), p. 585. MR 1511164, 10.1007/BF01450354
Reference: [13] Waterman P.L.: Möbius transformations in several dimensions.Advances in Math. 101 (1993), 87–113. Zbl 0793.15019, MR 1239454, 10.1006/aima.1993.1043
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-2_16.pdf 272.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo