Previous |  Up |  Next

Article

Title: Efficient robust estimation of time-series regression models (English)
Author: Čížek, Pavel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 3
Year: 2008
Pages: 267-279
Summary lang: English
.
Category: math
.
Summary: The paper studies a new class of robust regression estimators based on the two-step least weighted squares (2S-LWS) estimator which employs data-adaptive weights determined from the empirical distribution or quantile functions of regression residuals obtained from an initial robust fit. Just like many existing two-step robust methods, the proposed 2S-LWS estimator preserves robust properties of the initial robust estimate. However, contrary to the existing methods, the first-order asymptotic behavior of 2S-LWS is fully independent of the initial estimate under mild conditions. We propose data-adaptive weighting schemes that perform well both in the cross-section and time-series data and prove the asymptotic normality and efficiency of the resulting procedure. A simulation study documents these theoretical properties in finite samples. (English)
Keyword: asymptotic efficiency
Keyword: least weighted squares
Keyword: robust regression
Keyword: time series
MSC: 62F10
MSC: 62F12
MSC: 62F35
MSC: 62J05
MSC: 62L12
MSC: 62M10
MSC: 65C60
idZBL: Zbl 1189.62140
idMR: MR2411129
DOI: 10.1007/s10492-008-0009-x
.
Date available: 2010-07-20T12:23:04Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140320
.
Reference: [1] Balke, N. S., Fomby, T. B.: Large shocks, small shocks, and economic fluctuations: outliers in macroeconomic time series.J. Appl. Econom. 9 (1994), 181-200. 10.1002/jae.3950090205
Reference: [2] Čížek, P.: Least trimmed squares in nonlinear regression under dependence.J. Statist. Plann. Inference 136 (2006), 3967-3988. Zbl 1103.62061, MR 2299174, 10.1016/j.jspi.2005.05.004
Reference: [3] Čížek, P.: General trimmed estimation: robust approach to nonlinear and limited dependent variable models. CentER discussion paper.Econom. Theory (to appear). MR 2456536
Reference: [4] Čížek, P.: Efficient robust estimation of regression models. CentER discussion paper Vol. 87.CentER Tilburg University Tilburg (2007).
Reference: [5] Genton, M. G., Lucas, A.: Comprehensive definitions of breakdown points for independent and dependent observations.J. R. Stat. Soc., Stat. Methodol. Ser. B 65 (2003), 81-94. Zbl 1063.62038, MR 1959094, 10.1111/1467-9868.00373
Reference: [6] Gervini, D., Yohai, V. J.: A class of robust and fully efficient regression estimators.Ann. Stat. 30 (2002), 583-616. Zbl 1012.62073, MR 1902900, 10.1214/aos/1021379866
Reference: [7] Mašíček, L.: Diagnostics and sensitivity of robust models.Unpublished Ph.D. Thesis Faculty of Mathematics and Physics, Charles University Prague (2004).
Reference: [8] Preminger, A., Franck, R.: Foreign exchange rates: a robust regression approach.Int. J. Forecasting 23 (2007), 71-84. 10.1016/j.ijforecast.2006.04.009
Reference: [9] Rousseeuw, P. J.: Multivariate estimation with high breakdown point.Mathematical statistics and applications, Vol. B W. Grossman, G. Pflug, I. Vincze, W. Wertz Reidel Dordrecht (1985), 283-297. Zbl 0609.62054, MR 0851060
Reference: [10] Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection.John Wiley & Sons New York (1987). Zbl 0711.62030, MR 0914792
Reference: [11] Sakata, S., White, H.: High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility.Econometrica 66 (1998), 529-567. 10.2307/2998574
Reference: [12] Temple, J. R. W.: Robustness tests of the augmented Solow model.J. Appl. Econometrics 13 (1998), 361-375. 10.1002/(SICI)1099-1255(199807/08)13:4<361::AID-JAE483>3.0.CO;2-1
Reference: [13] Dijk, D. Van, Franses, P. H., Lucas, A.: Testing for ARCH in the presence of additive outliers.J. Appl. Econom. 14 (1999), 539-562. 10.1002/(SICI)1099-1255(199909/10)14:5<539::AID-JAE526>3.0.CO;2-W
Reference: [14] Víšek, J. Á.: The least weighted squares II. Consistency and asymptotic normality.Bulletin of the Czech Econom. Soc. 9 (2002), 1-28. MR 2208518
Reference: [15] Víšek, J. Á.: Instrumental weighted variables.Austr. J. Stat. 35 (2006), 379-387.
Reference: [16] Woo, J.: Economic, political, and institutional determinants of public deficits.J. Public Economics 87 (2003), 387-426. 10.1016/S0047-2727(01)00143-8
.

Files

Files Size Format View
AplMat_53-2008-3_9.pdf 277.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo