Previous |  Up |  Next

Article

Title: Dead cores of singular Dirichlet boundary value problems with $\phi $-Laplacian (English)
Author: Agarwal, Ravi P.
Author: O'Regan, Donal
Author: Staněk, Svatoslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 4
Year: 2008
Pages: 381-399
Summary lang: English
.
Category: math
.
Summary: The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem $(\phi (u'))' = \lambda f(t,u,u')$, $u(0)=u(T)=A$. Here $\lambda $ is the positive parameter, $A>0$, $f$ is singular at the value $0$ of its first phase variable and may be singular at the value $A$ of its first and at the value $0$ of its second phase variable. (English)
Keyword: singular Dirichlet boundary value problem
Keyword: dead core
Keyword: positive solution
Keyword: dead core solution
Keyword: pseudodead core solution
Keyword: existence
Keyword: $\phi $-Laplacian
MSC: 34B09
MSC: 34B16
MSC: 34B18
idZBL: Zbl 1199.34076
idMR: MR2433727
DOI: 10.1007/s10492-008-0031-z
.
Date available: 2010-07-20T12:28:55Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140327
.
Reference: [1] Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts.Clarendon Press Oxford (1975). Zbl 0315.76052
Reference: [2] Agarwal, R. P., O'Regan, D., Staněk, S.: General existence principles for nonlocal boundary value problems with $\phi$-Laplacian and their applications.Abstr. Appl. Anal. ID 96826 (2006), 1-30. Zbl 1147.34007, MR 2211656, 10.1155/AAA/2006/96826
Reference: [3] Agarwal, R. P., O'Regan, D., Staněk, S.: Positive and dead core solutions of singular Dirichlet boundary value problems with $\phi$-Laplacian.Comput. Math. Appl. 54 (2007), 255-266. MR 2337856, 10.1016/j.camwa.2006.12.026
Reference: [4] Baxley, J. V., Gersdorff, G. S.: Singular reaction-diffusion boundary value problems.J. Differ. Equations 115 (1995), 441-457. Zbl 0815.35019, MR 1310940, 10.1006/jdeq.1995.1022
Reference: [5] Bobisud, L. E.: Behavior of solutions for a Robin problem.J. Differential Equations 85 (1990), 91-104. Zbl 0704.34033, MR 1052329, 10.1016/0022-0396(90)90090-C
Reference: [6] Bobisud, L. E.: Asymptotic dead cores for reaction-diffusion equations.J. Math. Anal. Appl. 147 (1990), 249-262. Zbl 0706.34052, MR 1044698, 10.1016/0022-247X(90)90396-W
Reference: [7] Bobisud, L. E., O'Regan, D., Royalty, W. D.: Existence and nonexistence for a singular boundary value problem.Appl. Anal. 28 (1988), 245-256. Zbl 0628.34025, MR 0960389, 10.1080/00036818808839765
Reference: [8] Polášek, V., Rachůnková, I.: Singular Dirichlet problem for ordinary differential equations with $\phi$-Laplacian.Math. Bohem. 130 (2005), 409-425. Zbl 1114.34017, MR 2182386
Reference: [9] Wang, J., Gao, W.: Existence of solutions to boundary value problems for a nonlinear second order equation with weak Carathéodory functions.Differ. Equ. Dyn. Syst. 5 (1997), 175-185. Zbl 0891.34022, MR 1657262
.

Files

Files Size Format View
AplMat_53-2008-4_6.pdf 310.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo