Previous |  Up |  Next

Article

Title: A phase-field model of grain boundary motion (English)
Author: Ito, Akio
Author: Kenmochi, Nobuyuki
Author: Yamazaki, Noriaki
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 53
Issue: 5
Year: 2008
Pages: 433-454
Summary lang: English
.
Category: math
.
Summary: We consider a phase-field model of grain structure evolution, which appears in materials sciences. In this paper we study the grain boundary motion model of Kobayashi-Warren-Carter type, which contains a singular diffusivity. The main objective of this paper is to show the existence of solutions in a generalized sense. Moreover, we show the uniqueness of solutions for the model in one-dimensional space. (English)
Keyword: grain boundary motion
Keyword: singular diffusion
Keyword: subdifferential
MSC: 35D05
MSC: 35K45
MSC: 35K50
MSC: 35K55
MSC: 35R35
idZBL: Zbl 1199.35138
idMR: MR2469586
DOI: 10.1007/s10492-008-0035-8
.
Date available: 2010-07-20T12:32:46Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140333
.
Reference: [1] Andreu, F., Ballester, C., Caselles, V., Mazón, J. M.: The Dirichlet problem for the total variation flow.J. Funct. Anal. 180 (2001), 347-403. Zbl 0973.35109, MR 1814993, 10.1006/jfan.2000.3698
Reference: [2] Andreu, F., Caselles, V., Díaz, J. I., Mazón, J. M.: Some qualitative properties for the total variation flow.J. Funct. Anal. 188 (2002), 516-547. Zbl 1042.35018, MR 1883415, 10.1006/jfan.2001.3829
Reference: [3] Andreu, F., Caselles, V., Mazón, J. M.: A strongly degenerate quasilinear equation: the parabolic case.Arch. Ration. Mech. Anal. 176 (2005), 415-453. Zbl 1112.35111, MR 2185664, 10.1007/s00205-005-0358-5
Reference: [4] Attouch, H.: Variational Convergence for Functions and Operators.Pitman Advanced Publishing Program Boston-London-Melbourne (1984). Zbl 0561.49012, MR 0773850
Reference: [5] Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces.Editura Academiei Republicii Socialiste România, Bucharest Noordhoff International Publishing Leiden (1976). Zbl 0328.47035, MR 0390843
Reference: [6] Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in ${\Bbb R}^N$.J. Differ. Equations 184 (2002), 475-525. Zbl 1036.35099, MR 1929886, 10.1006/jdeq.2001.4150
Reference: [7] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Amsterdam (1973), French. MR 0348562
Reference: [8] Chen, L. Q.: Phase-field models for microstructure evolution.Ann. Rev. Mater. Res. 32 (2002), 113-140. 10.1146/annurev.matsci.32.112001.132041
Reference: [9] Clarke, F. H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts.John Wiley & Sons, Inc. New York (1983). MR 0709590
Reference: [10] Friedman, A.: Partial Differential Equations of Parabolic Type.Prentice-Hall Englewood Cliffs (1964). Zbl 0144.34903, MR 0181836
Reference: [11] Giga, M.-H., Giga, Y., Kobayashi, R.: Very singular diffusion equations. Proc. Taniguchi Conf. Math.Adv. Stud. Pure Math. 31 (2001), 93-125. MR 1865089, 10.2969/aspm/03110093
Reference: [12] Gurtin, M. E., Lusk, M. T.: Sharp interface and phase-field theories of recrystallization in the plane.Physica D 130 (1999), 133-154. Zbl 0948.74042, MR 1694730, 10.1016/S0167-2789(98)00323-6
Reference: [13] Ito, A., Gokieli, M., Niezgódka, M., Szpindler, M.: Mathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type.Submitted.
Reference: [14] Kenmochi, N.: Solvability of nonlinear evolution equations with time-dependent constraints and applications.Bull. Fac. Education, Chiba Univ. Vol. 30 (1981), 1-87. Zbl 0662.35054
Reference: [15] Kenmochi, N.: Monotonicity and compactness methods for nonlinear variational inequalities.Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 4 M. Chipot North Holland Amsterdam (2007), 203-298. Zbl 1192.35083, MR 2569333
Reference: [16] Kenmochi, N., Niezgódka, M.: Evolution systems of nonlinear variational inequalities arising from phase change problems.Nonlinear Anal., Theory Methods Appl. 22 (1994), 1163-1180. MR 1279139, 10.1016/0362-546X(94)90235-6
Reference: [17] Kobayashi, R., Giga, Y.: Equations with singular diffusivity.J. Statist. Phys. 95 (1999), 1187-1220. Zbl 0952.74014, MR 1712447, 10.1023/A:1004570921372
Reference: [18] Kobayashi, R., Warren, J. A., Carter, W. C.: A continuum model of grain boundaries.Physica D 140 (2000), 141-150. Zbl 0956.35123, MR 1752970, 10.1016/S0167-2789(00)00023-3
Reference: [19] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [20] Lusk, M. T.: A phase field paradigm for grain growth and recrystallization.Proc. R. Soc. London A 455 (1999), 677-700. Zbl 0933.74016, MR 1700887
Reference: [21] Ôtani, M.: Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators. Cauchy problems.J. Differ. Equations 46 (1982), 268-299. MR 0675911, 10.1016/0022-0396(82)90119-X
Reference: [22] Visintin, A.: Models of Phase Transitions. Progress in Nonlinear Differential Equations and their Applications, Vol. 28.Birkhäuser-Verlag Boston (1996). MR 1423808
.

Files

Files Size Format View
AplMat_53-2008-5_3.pdf 318.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo