Previous |  Up |  Next

Article

Title: Development of three dimensional constitutive theories based on lower dimensional experimental data (English)
Author: Karra, Satish
Author: Rajagopal, Kumbakonam R.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 2
Year: 2009
Pages: 147-176
Summary lang: English
.
Category: math
.
Summary: Most three dimensional constitutive relations that have been developed to describe the behavior of bodies are correlated against one dimensional and two dimensional experiments. What is usually lost sight of is the fact that infinity of such three dimensional models may be able to explain these experiments that are lower dimensional. Recently, the notion of maximization of the rate of entropy production has been used to obtain constitutive relations based on the choice of the stored energy and rate of entropy production, etc. In this paper we show different choices for the manner in which the body stores energy and dissipates energy and satisfies the requirement of maximization of the rate of entropy production that can all describe the same experimental data. All of these three dimensional models, in one dimension, reduce to the model proposed by Burgers to describe the viscoelastic behavior of bodies. (English)
Keyword: constitutive relations
Keyword: Lagrange multiplier
Keyword: Helmholtz potential
Keyword: rate of dissipation
Keyword: viscoelasticity
Keyword: Burgers' fluid
Keyword: maximum entropy production
MSC: 74A15
MSC: 74A20
MSC: 74D10
MSC: 76A02
MSC: 76A05
MSC: 76A10
idZBL: Zbl 1200.76005
idMR: MR2491852
DOI: 10.1007/s10492-009-0010-z
.
Date available: 2010-07-20T12:53:13Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140356
.
Reference: [1] Burgers, J. M.: Mechanical considerations-model systems-phenomenological theories of relaxation and of viscosity.First Report on Viscosity and Plasticity Nordemann Publishing Company New York (1935).
Reference: [2] Green, A. E., Naghdi, P. M.: On thermodynamics and the nature of the second law.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 357 (1977), 253-270. MR 0462241, 10.1098/rspa.1977.0166
Reference: [3] Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics.Comput. Methods Appl. Mech. Eng. 189 (2000), 419-438. Zbl 0980.74006, MR 1781866, 10.1016/S0045-7825(99)00472-7
Reference: [4] Málek, J., Rajagopal, K. R.: A thermodynamic framework for a mixture of two liquids.Nonlinear Anal.--Real World Appl. 9 (2008), 1649-1660. Zbl 1154.76311, MR 2422570
Reference: [5] Maxwell, J. C.: On the dynamical theory of gases.Philos. Trans. Roy. Soc. London 157 (1867), 49-88. 10.1098/rstl.1867.0004
Reference: [6] J. Murali Krishnan, Rajagopal, K. R.: Thermodynamic framework for the constitutive modeling of asphalt concrete: Theory and applications.J. Mater. Civ. Eng. 16 (2004), 155-166. 10.1061/(ASCE)0899-1561(2004)16:2(155)
Reference: [7] Oldroyd, J. G.: On the formulation of rheological equation of state.Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 200 (1950), 523-591. MR 0035192, 10.1098/rspa.1950.0035
Reference: [8] Rajagopal, K. R.: Multiple configurations in continuum mechanics.Report Vol. 6 Institute for Computational and Applied Mechanics, University of Pittsburgh Pittsburgh (1995).
Reference: [9] Rajagopal, K. R.: On implicit constitutive theories.Appl. Math. 48 (2003), 279-319. Zbl 1099.74009, MR 1994378, 10.1023/A:1026062615145
Reference: [10] Rajagopal, K. R., Srinivasa, A. R.: Mechanics of the inelastic behavior of materials. Part II: Inelastic response.Int. J. Plast. 14 (1998), 969-995. 10.1016/S0749-6419(98)00041-2
Reference: [11] Rajagopal, K. R., Srinivasa, A. R.: A thermodynamic framework for rate type fluid models.J. Non-Newtonian Fluid Mech. 88 (2000), 207-227. Zbl 0960.76005, 10.1016/S0377-0257(99)00023-3
Reference: [12] Rajagopal, K. R., Srinivasa, A. R.: On the thermomechanics of materials that have multiple natural configurations. Part I: Viscoelasticity and classical plasticity.Z. Angew. Math. Phys. 55 (2004), 861-893. Zbl 1180.74006, MR 2087769, 10.1007/s00033-004-4019-6
Reference: [13] Rajagopal, K. R., Srinivasa, A. R.: On the thermomechanics of materials that have multiple natural configurations. Part II: Twinning and solid to solid phase transformation.Z. Angew. Math. Phys. 55 (2004), 1074-1093. MR 2100532, 10.1007/s00033-004-4020-0
Reference: [14] Rajagopal, K. R., Srinivasa, A. R.: On thermomechanical restrictions of continua.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460 (2004), 631-651. Zbl 1041.74002, MR 2034660, 10.1098/rspa.2002.1111
Reference: [15] Rajagopal, K. R., Srinivasa, A. R.: On the thermodynamics of fluids defined by implicit constitutive relations.Z. Angew. Math. Phys. 59 (2008), 715-729. Zbl 1149.76007, MR 2417387, 10.1007/s00033-007-7039-1
Reference: [16] Rao, I. J., Rajagopal, K. R.: On a new interpretation of the classical Maxwell model.Mech. Res. Comm. 34 (2007), 509-514. Zbl 1192.74058, MR 2372417, 10.1016/j.mechrescom.2007.07.001
Reference: [17] Ziegler, H.: Some extremum principles in irreversible thermodynamics.In: Progress in Solid Mechanics, Vol. 4 I. N. Sneddon, R. Hill North Holland New York (1963). MR 0163470
.

Files

Files Size Format View
AplMat_54-2009-2_3.pdf 362.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo