Full entry |
PDF
(0.2 MB)
Feedback

mathematical programming; second order $\eta $-approximated optimization problem; second order invex function; second order optimality conditions

References:

[1] Antczak, T.: **An $\eta $-approximation approach to nonlinear mathematical programming problems involving invex functions**. Numer. Funct. Anal. Optimization 25 (2004), 423-438. DOI 10.1081/NFA-200042183 | MR 2106268

[2] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: **Nonlinear Programming. Theory and Algorithms**. John Wiley & Sons New York (1993). MR 2218478 | Zbl 0774.90075

[3] Bector, C. R., Bector, B. K.: **(Generalized)-bonvex functions and second order duality for a nonlinear programming problem**. Congr. Numerantium 52 (1985), 37-52.

[4] Bector, C. R., Bector, M. K.: **On various duality theorems for second order duality in nonlinear programming**. Cah. Cent. Etud. Rech. Opér. 28 (1986), 283-292. MR 0885768 | Zbl 0622.90068

[5] Bector, C. R., Chandra, S.: **Generalized bonvex functions and second order duality in mathematical programming**. Res. Rep. 85-2 Department of Actuarial and Management Sciences, University of Manitoba Winnipeg (1985).

[6] Bector, C. R., Chandra, S.: **(Generalized) bonvexity and higher order duality for fractional programming**. Opsearch 24 (1987), 143-154. MR 0918321 | Zbl 0638.90095

[7] Ben-Israel, A., Mond, B.: **What is invexity?**. J. Aust. Math. Soc. Ser. B 28 (1986), 1-9. DOI 10.1017/S0334270000005142 | MR 0846778 | Zbl 0603.90119

[8] Ben-Tal, A.: **Second-order and related extremality conditions in nonlinear programming**. J. Optimization Theory Appl. 31 (1980), 143-165. DOI 10.1007/BF00934107 | MR 0600379 | Zbl 0416.90062

[9] Craven, B. D.: **Invex functions and constrained local minima**. Bull. Aust. Math. Soc. 24 (1981), 357-366. DOI 10.1017/S0004972700004895 | MR 0647362 | Zbl 0452.90066

[10] Hanson, M. A.: **On sufficiency of the Kuhn-Tucker conditions**. J. Math. Anal. Appl. 80 (1981), 545-550. DOI 10.1016/0022-247X(81)90123-2 | MR 0614849 | Zbl 0463.90080

[11] Mangasarian, O. L.: **Nonlinear Programming**. McGraw-Hill New York (1969). MR 0252038 | Zbl 0194.20201

[12] Martin, D. H.: **The essence of invexity**. J. Optimization Theory Appl. 47 (1985), 65-76. DOI 10.1007/BF00941316 | MR 0802390 | Zbl 0552.90077