Previous |  Up |  Next

Article

Title: A globally convergent non-interior point algorithm with full Newton step for second-order cone programming (English)
Author: Fang, Liang
Author: He, Guoping
Author: Sun, Li
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 54
Issue: 5
Year: 2009
Pages: 447-464
Summary lang: English
.
Category: math
.
Summary: A non-interior point algorithm based on projection for second-order cone programming problems is proposed and analyzed. The main idea of the algorithm is that we cast the complementary equation in the primal-dual optimality conditions as a projection equation. By using this reformulation, we only need to solve a system of linear equations with the same coefficient matrix and compute two simple projections at each iteration, without performing any line search. This algorithm can start from an arbitrary point, and does not require the row vectors of $A$ to be linearly independent. We prove that our algorithm is globally convergent under weak conditions. Preliminary numerical results demonstrate the effectiveness of our algorithm. (English)
Keyword: non-interior point algorithm
Keyword: second-order cone programming
Keyword: Jordan product
Keyword: optimality condition
Keyword: central path
MSC: 65K05
MSC: 65Y20
MSC: 90C25
MSC: 90C30
MSC: 90C51
idZBL: Zbl 1212.90299
idMR: MR2545411
DOI: 10.1007/s10492-009-0029-1
.
Date available: 2010-07-20T13:22:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140378
.
Reference: [1] Alizadeh, F., Goldfarb, D.: Second-order cone programming.Math. Program. 95 (2003), 3-51. Zbl 1153.90522, MR 1971381, 10.1007/s10107-002-0339-5
Reference: [2] Benson, H. Y., Vanderbei, R. J.: Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming.Math. Program. Ser. B 95 (2003), 279-302. Zbl 1030.90138, MR 1976482, 10.1007/s10107-002-0350-x
Reference: [3] Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second order cone.Math. Oper. Res. 26 (2001), 193-205. Zbl 1082.90133, MR 1895823, 10.1287/moor.26.2.193.10561
Reference: [4] Chen, X. D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems.Comput. Optim. Appl. 25 (2003), 39-56. Zbl 1038.90084, MR 1996662, 10.1023/A:1022996819381
Reference: [5] Choi, I. C., Monma, C. L., Shanno, D.: Further developments of primal-dual interior point methods.ORSA J. Comput. 2 (1990), 304-311. 10.1287/ijoc.2.4.304
Reference: [6] Faraut, J., Korányi, A.: Analysis on Symmetric Cones.Oxford University Press Oxford (1994). MR 1446489
Reference: [7] Faybusovich, L.: Euclidean Jordan algebras and interior-point algorithms.Positivity 1 (1997), 331-357. Zbl 0973.90095, MR 1660399, 10.1023/A:1009701824047
Reference: [8] Faybusovich, L.: Linear systems in Jordan algebras and primal-dual interior point algorithms.J. Comput. Appl. Math. 86 (1997), 149-175. Zbl 0889.65066, MR 1491432, 10.1016/S0377-0427(97)00153-2
Reference: [9] Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems.SIAM J. Optim. 12 (2002), 436-460. MR 1885570, 10.1137/S1052623400380365
Reference: [10] Han, Q. M.: Projection and contraction methods for semidefinite programming.Appl. Math. Comput. 95 (1998), 275-289. Zbl 0938.90054, MR 1633814, 10.1016/S0096-3003(97)10113-8
Reference: [11] Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems.SIAM J. Optim. 15 (2005), 593-615. Zbl 1114.90139, MR 2144183, 10.1137/S1052623403421516
Reference: [12] He, B. S., Liao, L. Z., Han, D. R., Yang, H.: A new inexact alternating directions method for monotone variational inequality.Math. Program. 92 (2002), 103-118. MR 1892298, 10.1007/s101070100280
Reference: [13] Huang, Z., Gu, W.: A smoothing-type algorithm for solving linear complementarity problems with strong convergence properties.Appl. Math. Optim. 57 (2008), 17-29. Zbl 1190.90236, MR 2373004, 10.1007/s00245-007-9004-y
Reference: [14] Kim, S., Kojima, M.: Second order cone programming relaxations of nonconvex quadratic optimization problems.Optim. Methods Softw. 15 (2001), 201-224. MR 1892585, 10.1080/10556780108805819
Reference: [15] Kuo, Y. J., Mittelmann, H. D.: Interior point methods for second-order cone programming and OR applications.Comput. Optim. Appl. 28 (2004), 255-285. Zbl 1084.90046, MR 2080003, 10.1023/B:COAP.0000033964.95511.23
Reference: [16] Liu, Y., Zhang, L., Wang, Y.: Analysis of a smoothing method for symmetric conic linear programming.J. Appl. Math. Comput. 22 (2006), 133-148. Zbl 1132.90353, MR 2248446, 10.1007/BF02896466
Reference: [17] Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second order cone programming.Linear Algebra Appl. 284 (1998), 193-228. Zbl 0946.90050, MR 1655138
Reference: [18] Monteiro, R. D. C., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions.Math. Program. 88 (2000), 61-83. Zbl 0967.65077, MR 1765893, 10.1007/PL00011378
Reference: [19] Monteiro, R. D. C., Zhang, Y.: A unified analysis for a class of path-following primal-dual interior-point algorithms for semidefinite programming.Math. Program. 81 (1998), 281-299. MR 1617748, 10.1007/BF01580085
Reference: [20] Nesterov, Yu. E., Nemirovskii, A. S.: Interior-Point Polynomial Algorithms in Convex Programming.SIAM Philadelphia (1994). Zbl 0824.90112, MR 1258086
Reference: [21] Rangarajan, B. K.: Polynomial convergence of infeasible-interior-point methods over symmetric cones.SIAM J. Optim. 16 (2006), 1211-1229. Zbl 1131.90043, MR 2219140, 10.1137/040606557
Reference: [22] Rangarajan, B., Todd, M. J.: Convergence of infeasible-interior-point methods for self-scaled conic programming. Technical Report 1388.School of OR & IE, Cornell University.
Reference: [23] Schmieta, S. H., Alizadeh, F.: Extension of primal-dual interior-point algorithm to symmetric cones.Math. Program. 96 (2003), 409-438. MR 1993457, 10.1007/s10107-003-0380-z
Reference: [24] Schmieta, S. H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones.Math. Oper. Res. 26 (2001), 543-564. Zbl 1073.90572, MR 1849884, 10.1287/moor.26.3.543.10582
Reference: [25] Schmieta, S. H., Alizadeh, F.: Extension of commutative class of primal-dual interior point algorithms to symmetric cones. Technical Report RRR 13-99, RUTCOR.Rutgers University, August 1999.
Reference: [26] Sun, D., Sun, J.: Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions.Math. Program., Ser. A 103 (2005), 575-581. Zbl 1099.90062, MR 2166550, 10.1007/s10107-005-0577-4
Reference: [27] Todd, M.: Semidefinite optimization.Acta Numerica 10 (2001), 515-560. Zbl 1105.65334, MR 2009698, 10.1017/S0962492901000071
Reference: [28] Toh, K. C., Todd, M. J., Tütüncü, R. H.: SDPT3-A Matlab software package for semidefinite programming. Version 2.1.Optim. Methods Softw. 11 (1999), 545-581. MR 1778429, 10.1080/10556789908805762
Reference: [29] Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming.Optim. Methods Softw. 11 (1999), 141-182. Zbl 0957.90129, MR 1777456, 10.1080/10556789908805750
Reference: [30] Tsuchiya, T.: A polynomial primal-dual path-following algorithm for second-order cone programming. Technical Report No. 649.The Institute of Statistical Mathematics Tokyo (1997).
Reference: [31] Wang, S. L., Yang, H., He, B. S.: Solving a class of asymmetric variational inequalities by a new alternating direction method.Comput. Math. Appl. 40 (2000), 927-937. Zbl 0959.49009, MR 1781888, 10.1016/S0898-1221(00)85004-X
Reference: [32] Wright, S. J.: Primal-Dual Interior Point Methods.Society for Industrial and Applied Mathematics (SIAM) Philadelphia (1997). Zbl 0863.65031, MR 1422257
Reference: [33] Xue, G. L., Ye, Y. Y.: An efficient algorithm for minimizing a sum of Euclidean norms with applications.SIAM J. Optim. 7 (1997), 1017-1036. Zbl 0885.68074, MR 1479612, 10.1137/S1052623495288362
Reference: [34] Zhang, Y.: On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming.SIAM J. Optim. 8 (1998), 365-386. Zbl 0913.65050, MR 1618806, 10.1137/S1052623495296115
.

Files

Files Size Format View
AplMat_54-2009-5_5.pdf 293.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo