Previous |  Up |  Next

Article

Title: Some concepts of regularity for parametric multiple-integral problems in the calculus of variations (English)
Author: Crampin, M.
Author: Saunders, D. J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 741-758
Summary lang: English
.
Category: math
.
Summary: We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter $(m+1)$-form are holonomic. (English)
Keyword: parametric variational problem
Keyword: regularity
Keyword: multisymplectic
MSC: 37Jxx
MSC: 49K10
MSC: 49N60
MSC: 53Cxx
MSC: 58E15
MSC: 70Gxx
idZBL: Zbl 1224.58012
idMR: MR2545653
.
Date available: 2010-07-20T15:37:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140513
.
Reference: [1] Cantrijn, F., Ibort, A., Léon, M. de: On the geometry of multisymplectic manifolds.J. Australian Math. Soc. 66 (1999), 303-330. MR 1694063, 10.1017/S1446788700036636
Reference: [2] Cariñena, J. F., Crampin, M., Ibort, L. A.: On the multisymplectic formalism for first order field theories.Diff. Geom. Appl. 1 (1991), 345-374. MR 1244450, 10.1016/0926-2245(91)90013-Y
Reference: [3] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations.Acta Applicandae Math. 76 (2003), 37-55. Zbl 1031.53106, MR 1967453, 10.1023/A:1022862117662
Reference: [4] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory and Poincaré-Cartan forms for higher-order multiple-integral variational problems.Houston J. Math. 30 (2004), 657-689. Zbl 1057.58008, MR 2083869
Reference: [5] Crampin, M., Saunders, D. J.: On null Lagrangians.Diff. Geom. Appl. 22 (2005), 131-146. Zbl 1073.70023, MR 2122738, 10.1016/j.difgeo.2004.10.002
Reference: [6] Dedecker, P. M.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations.Lecture Notes in Mathematics, Springer 570 (1977), 395-456. Zbl 0352.49018, MR 0458478, 10.1007/BFb0087794
Reference: [7] Giaquinta, M., Hildenbrandt, S.: Calculus of Variations II.Springer (1996). MR 1385926
Reference: [8] Krupková, O.: Hamiltonian field theory.J. Geom. Phys. 43 (2002), 93-132. MR 1919207, 10.1016/S0393-0440(01)00087-0
Reference: [9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations.Van Nostrand (1966). MR 0230189
Reference: [10] Rund, H.: A geometrical theory of multiple integral problems in the calculus of variations.Canadian J. Math. 20 (1968), 639-657. Zbl 0155.44301, MR 0238243, 10.4153/CJM-1968-062-1
.

Files

Files Size Format View
CzechMathJ_59-2009-3_14.pdf 303.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo