| Title: | Weak continuity properties of topologized groups (English) | 
| Author: | Cao, J. | 
| Author: | Drozdowski, R. | 
| Author: | Piotrowski, Z. | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 60 | 
| Issue: | 1 | 
| Year: | 2010 | 
| Pages: | 133-148 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if $(G, \cdot ,\tau )$ is a regular right (left) semitopological group with $\mathop{{\rm dev}}(G)<\mathop{{\rm Nov}}(G)$ such that all left (right) translations are feebly continuous, then $(G,\cdot ,\tau )$ is a topological group. This extends several results in literature. (English) | 
| Keyword: | developability number | 
| Keyword: | feebly continuous | 
| Keyword: | nearly continuous | 
| Keyword: | Novak number | 
| Keyword: | paratopological group | 
| Keyword: | semitopological group | 
| Keyword: | topological group | 
| MSC: | 22A05 | 
| MSC: | 54C08 | 
| MSC: | 54E52 | 
| MSC: | 54H11 | 
| idZBL: | Zbl 1224.54079 | 
| idMR: | MR2595078 | 
| . | 
| Date available: | 2010-07-20T16:22:23Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/140557 | 
| . | 
| Reference: | [1] Andrijevi'c, D.: Semi-preopen sets.Mat. Ves. 38 (1986), 24-32. | 
| Reference: | [2] Arhangel'skii, A. V.: Mappings and spaces.Russ. Math. Surv. 21 (1966), 115-162. MR 0227950 | 
| Reference: | [3] Arhangel'skii, A. V., Reznichenko, E. A.: Paratopological and semitopological groups versus topological groups.Topology Appl. 151 (2005), 107-119. Zbl 1077.54023, MR 2139745, 10.1016/j.topol.2003.08.035 | 
| Reference: | [4] Banakh, T., Ravsky, O.: Oscillator topologies on a paratopological group and related number invariants.Algebraic Structures and Their Applications. Proc. Third International Algebraic Conference, Kiev, Ukraine, July 2-8, 2001 Instytut Matematyky NAN Kiev (2002), 140-153. Zbl 1098.22004, MR 2210489 | 
| Reference: | [5] Banakh, T., Ravsky, S.: On subgroups of saturated or totally bounded paratopological groups.Algebra Discrete Math. (2003), 1-20. Zbl 1061.22003, MR 2070399 | 
| Reference: | [6] Bella, A.: Some remarks on the Novak number.General topology and its relations to modern analysis and algebra VI (Prague, 1986) Heldermann Berlin (1988), 43-48. Zbl 0634.54004, MR 0952589 | 
| Reference: | [7] Bohn, E., Lee, J.: Semi-topological groups.Am. Math. Mon. 72 (1965), 996-998. Zbl 0134.03601, MR 0190259, 10.2307/2313342 | 
| Reference: | [8] Bourbaki, N.: Elements of Mathematics, General Topology, Chapters 1-4.Springer Berlin (1989). Zbl 0683.54003, MR 0979294 | 
| Reference: | [9] Bouziad, A.: The Ellis theorem and continuity in group.Topology Appl. 50 (1993), 73-80. MR 1217698, 10.1016/0166-8641(93)90074-N | 
| Reference: | [10] Bouziad, A.: Continuity of separately continuous group actions in $p$-spaces.Topology Appl. 71 (1996), 119-124. Zbl 0855.22006, MR 1399551, 10.1016/0166-8641(95)00039-9 | 
| Reference: | [11] Cao, J., Greenwood, S.: The ideal generated by $\sigma$-nowhere dense sets.Appl. Gen. Topol. 7 (2006), 253-264. Zbl 1114.54021, MR 2295174, 10.4995/agt.2006.1928 | 
| Reference: | [12] Engelking, R.: General Topology. Revised and completed edition.Heldermann-Verlag Berlin (1989). MR 1039321 | 
| Reference: | [13] Ferri, S., Hernández, S., Wu, T. S.: Continuity in topological groups.Topology Appl. 153 (2006), 1451-1457. MR 2211210, 10.1016/j.topol.2005.04.007 | 
| Reference: | [14] Frolík, Z.: Remarks concerning the invariance of Baire spaces under mappings.Czechoslovak Math. J. 11 (1961), 381-385. MR 0133098 | 
| Reference: | [15] Gentry, K. R., Hoyle, H. B.: Somewhat continuous functions.Czechoslovak Math. J. 21 (1971), 5-12. Zbl 0222.54010, MR 0278269 | 
| Reference: | [16] Guran, I.: Cardinal invariants of paratopological grups.2nd International Algebraic Conference in Ukraine Vinnytsia (1999). | 
| Reference: | [17] J. L. Kelley, I. Namioka, W. F. Donoghue jun., K. R. Lucas, B. J. Pettis, T. E. Poulsen, G. B. Price, W. Robertson, W. R. Scott, K. T. Smith: Linear Topological Spaces.D. Van Nostarand Company, Inc. Princeton (1963). MR 0166578 | 
| Reference: | [18] Kempisty, S.: Sur les fonctions quasicontinues.Fundam. Math. 19 (1932), 184-197 French. Zbl 0005.19802, 10.4064/fm-19-1-184-197 | 
| Reference: | [19] Kenderov, P. S., Kortezov, I. S., Moors, W. B.: Topological games and topological groups.Topology Appl. 109 (2001), 157-165. Zbl 0976.22003, MR 1806330, 10.1016/S0166-8641(99)00152-2 | 
| Reference: | [20] Lau, A. T.-M., Loy, R. J.: Banach algebras on compact right topological groups.J. Funct. Anal. 225 (2005), 263-300. Zbl 1098.46035, MR 2152500, 10.1016/j.jfa.2005.04.006 | 
| Reference: | [21] Liu, C.: A note on paratopological group.Commentat. Math. Univ. Carol. 47 (2006), 633-640. MR 2337418 | 
| Reference: | [22] Mercourakis, S., Negrepontis, S.: Banach Spaces and Topology. II. Recent Progress in General Topology (Prague, 1991).North-Holland Amsterdam (1992), 493-536. MR 1229137 | 
| Reference: | [23] Montgomery, D.: Continuity in topological groups.Bull. Am. Math. Soc. 42 (1936), 879-882. Zbl 0015.39403, MR 1563458, 10.1090/S0002-9904-1936-06456-6 | 
| Reference: | [24] Neubrunn, T.: A generalized continuity and product spaces.Math. Slovaca 26 (1976), 97-99. Zbl 0318.54008, MR 0436064 | 
| Reference: | [25] Neubrunn, T.: Quasi-continuity.Real Anal. Exch. 14 (1989), 259-306. Zbl 0679.26003, MR 0995972, 10.2307/44151947 | 
| Reference: | [26] Piotrowski, Z.: Quasi-continuity and product spaces.Proc. Int. Conf. on Geometric Topology, Warszawa 1978 PWN Warsaw (1980), 349-352. Zbl 0481.54007, MR 0656769 | 
| Reference: | [27] Piotrowski, Z.: Separate and joint continuity.Real Anal. Exch. 11 (1985-86), 293-322. Zbl 0606.54009, MR 0844254, 10.2307/44151750 | 
| Reference: | [28] Piotrowski, Z.: Separate and joint continuity II.Real Anal. Exch. 15 (1990), 248-258. Zbl 0702.54009, MR 1042540, 10.2307/44152002 | 
| Reference: | [29] Piotrowski, Z.: Separate and joint continuity in Baire groups.Tatra Mt. Math. Publ. 14 (1998), 109-116. Zbl 0938.22001, MR 1651201 | 
| Reference: | [30] Pták, V.: Completeness and the open mapping theorem.Bull. Soc. Math. Fr. 86 (1958), 41-74. MR 0105606, 10.24033/bsmf.1498 | 
| Reference: | [31] Ravsky, O.: Paratopological groups. II.Math. Stud. 17 (2002), 93-101. Zbl 1018.22001, MR 1932275 | 
| Reference: | [32] Rothmann, D. D.: A nearly discrete metric.Am. Math. Mon. 81 (1974), 1018-1019. Zbl 0292.26001, MR 0350705, 10.2307/2319315 | 
| Reference: | [33] Ruppert, W.: Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics Vol. 1079.Springer (1984). MR 0762985 | 
| Reference: | [34] Solecki, S., Srivastava, S. M.: Automatic continuity of group operations.Topology Appl. 77 (1997), 65-75. Zbl 0882.22001, MR 1443429, 10.1016/S0166-8641(96)00119-8 | 
| Reference: | [35] Talagrand, M.: Espaces de Baire et espaces de Namioka.Math. Ann. 270 (1985), 159-164 French. Zbl 0582.54008, MR 0771977, 10.1007/BF01456180 | 
| Reference: | [36] Tkachenko, M.: Paratopological groups versus topological groups.Lecture at Advances in Set-Theoretic Topology. Conference in Honour of Tsugunori Nogura on his 60th Birthday, Erice, June 2008. | 
| Reference: | [37] Zelazko, W.: A theorem on $B_0$ division algebras.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. Zbl 0095.31303, MR 0125901 | 
| Reference: | [38] Zelazko, W.: A theorem on $B_0$ division algebras.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. Zbl 0095.31303, MR 0125901 | 
| . |