Previous |  Up |  Next

Article

Title: Weak continuity properties of topologized groups (English)
Author: Cao, J.
Author: Drozdowski, R.
Author: Piotrowski, Z.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 133-148
Summary lang: English
.
Category: math
.
Summary: We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if $(G, \cdot ,\tau )$ is a regular right (left) semitopological group with $\mathop{{\rm dev}}(G)<\mathop{{\rm Nov}}(G)$ such that all left (right) translations are feebly continuous, then $(G,\cdot ,\tau )$ is a topological group. This extends several results in literature. (English)
Keyword: developability number
Keyword: feebly continuous
Keyword: nearly continuous
Keyword: Novak number
Keyword: paratopological group
Keyword: semitopological group
Keyword: topological group
MSC: 22A05
MSC: 54C08
MSC: 54E52
MSC: 54H11
idZBL: Zbl 1224.54079
idMR: MR2595078
.
Date available: 2010-07-20T16:22:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140557
.
Reference: [1] Andrijevi&apos;c, D.: Semi-preopen sets.Mat. Ves. 38 (1986), 24-32.
Reference: [2] Arhangel'skii, A. V.: Mappings and spaces.Russ. Math. Surv. 21 (1966), 115-162. MR 0227950
Reference: [3] Arhangel'skii, A. V., Reznichenko, E. A.: Paratopological and semitopological groups versus topological groups.Topology Appl. 151 (2005), 107-119. Zbl 1077.54023, MR 2139745, 10.1016/j.topol.2003.08.035
Reference: [4] Banakh, T., Ravsky, O.: Oscillator topologies on a paratopological group and related number invariants.Algebraic Structures and Their Applications. Proc. Third International Algebraic Conference, Kiev, Ukraine, July 2-8, 2001 Instytut Matematyky NAN Kiev (2002), 140-153. Zbl 1098.22004, MR 2210489
Reference: [5] Banakh, T., Ravsky, S.: On subgroups of saturated or totally bounded paratopological groups.Algebra Discrete Math. (2003), 1-20. Zbl 1061.22003, MR 2070399
Reference: [6] Bella, A.: Some remarks on the Novak number.General topology and its relations to modern analysis and algebra VI (Prague, 1986) Heldermann Berlin (1988), 43-48. Zbl 0634.54004, MR 0952589
Reference: [7] Bohn, E., Lee, J.: Semi-topological groups.Am. Math. Mon. 72 (1965), 996-998. Zbl 0134.03601, MR 0190259, 10.2307/2313342
Reference: [8] Bourbaki, N.: Elements of Mathematics, General Topology, Chapters 1-4.Springer Berlin (1989). Zbl 0683.54003, MR 0979294
Reference: [9] Bouziad, A.: The Ellis theorem and continuity in group.Topology Appl. 50 (1993), 73-80. MR 1217698, 10.1016/0166-8641(93)90074-N
Reference: [10] Bouziad, A.: Continuity of separately continuous group actions in $p$-spaces.Topology Appl. 71 (1996), 119-124. Zbl 0855.22006, MR 1399551, 10.1016/0166-8641(95)00039-9
Reference: [11] Cao, J., Greenwood, S.: The ideal generated by $\sigma$-nowhere dense sets.Appl. Gen. Topol. 7 (2006), 253-264. Zbl 1114.54021, MR 2295174, 10.4995/agt.2006.1928
Reference: [12] Engelking, R.: General Topology. Revised and completed edition.Heldermann-Verlag Berlin (1989). MR 1039321
Reference: [13] Ferri, S., Hernández, S., Wu, T. S.: Continuity in topological groups.Topology Appl. 153 (2006), 1451-1457. MR 2211210, 10.1016/j.topol.2005.04.007
Reference: [14] Frolík, Z.: Remarks concerning the invariance of Baire spaces under mappings.Czechoslovak Math. J. 11 (1961), 381-385. MR 0133098
Reference: [15] Gentry, K. R., Hoyle, H. B.: Somewhat continuous functions.Czechoslovak Math. J. 21 (1971), 5-12. Zbl 0222.54010, MR 0278269
Reference: [16] Guran, I.: Cardinal invariants of paratopological grups.2nd International Algebraic Conference in Ukraine Vinnytsia (1999).
Reference: [17] J. L. Kelley, I. Namioka, W. F. Donoghue jun., K. R. Lucas, B. J. Pettis, T. E. Poulsen, G. B. Price, W. Robertson, W. R. Scott, K. T. Smith: Linear Topological Spaces.D. Van Nostarand Company, Inc. Princeton (1963). MR 0166578
Reference: [18] Kempisty, S.: Sur les fonctions quasicontinues.Fundam. Math. 19 (1932), 184-197 French. Zbl 0005.19802, 10.4064/fm-19-1-184-197
Reference: [19] Kenderov, P. S., Kortezov, I. S., Moors, W. B.: Topological games and topological groups.Topology Appl. 109 (2001), 157-165. Zbl 0976.22003, MR 1806330, 10.1016/S0166-8641(99)00152-2
Reference: [20] Lau, A. T.-M., Loy, R. J.: Banach algebras on compact right topological groups.J. Funct. Anal. 225 (2005), 263-300. Zbl 1098.46035, MR 2152500, 10.1016/j.jfa.2005.04.006
Reference: [21] Liu, C.: A note on paratopological group.Commentat. Math. Univ. Carol. 47 (2006), 633-640. MR 2337418
Reference: [22] Mercourakis, S., Negrepontis, S.: Banach Spaces and Topology. II. Recent Progress in General Topology (Prague, 1991).North-Holland Amsterdam (1992), 493-536. MR 1229137
Reference: [23] Montgomery, D.: Continuity in topological groups.Bull. Am. Math. Soc. 42 (1936), 879-882. Zbl 0015.39403, MR 1563458, 10.1090/S0002-9904-1936-06456-6
Reference: [24] Neubrunn, T.: A generalized continuity and product spaces.Math. Slovaca 26 (1976), 97-99. Zbl 0318.54008, MR 0436064
Reference: [25] Neubrunn, T.: Quasi-continuity.Real Anal. Exch. 14 (1989), 259-306. Zbl 0679.26003, MR 0995972, 10.2307/44151947
Reference: [26] Piotrowski, Z.: Quasi-continuity and product spaces.Proc. Int. Conf. on Geometric Topology, Warszawa 1978 PWN Warsaw (1980), 349-352. Zbl 0481.54007, MR 0656769
Reference: [27] Piotrowski, Z.: Separate and joint continuity.Real Anal. Exch. 11 (1985-86), 293-322. Zbl 0606.54009, MR 0844254, 10.2307/44151750
Reference: [28] Piotrowski, Z.: Separate and joint continuity II.Real Anal. Exch. 15 (1990), 248-258. Zbl 0702.54009, MR 1042540, 10.2307/44152002
Reference: [29] Piotrowski, Z.: Separate and joint continuity in Baire groups.Tatra Mt. Math. Publ. 14 (1998), 109-116. Zbl 0938.22001, MR 1651201
Reference: [30] Pták, V.: Completeness and the open mapping theorem.Bull. Soc. Math. Fr. 86 (1958), 41-74. MR 0105606, 10.24033/bsmf.1498
Reference: [31] Ravsky, O.: Paratopological groups. II.Math. Stud. 17 (2002), 93-101. Zbl 1018.22001, MR 1932275
Reference: [32] Rothmann, D. D.: A nearly discrete metric.Am. Math. Mon. 81 (1974), 1018-1019. Zbl 0292.26001, MR 0350705, 10.2307/2319315
Reference: [33] Ruppert, W.: Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics Vol. 1079.Springer (1984). MR 0762985
Reference: [34] Solecki, S., Srivastava, S. M.: Automatic continuity of group operations.Topology Appl. 77 (1997), 65-75. Zbl 0882.22001, MR 1443429, 10.1016/S0166-8641(96)00119-8
Reference: [35] Talagrand, M.: Espaces de Baire et espaces de Namioka.Math. Ann. 270 (1985), 159-164 French. Zbl 0582.54008, MR 0771977, 10.1007/BF01456180
Reference: [36] Tkachenko, M.: Paratopological groups versus topological groups.Lecture at Advances in Set-Theoretic Topology. Conference in Honour of Tsugunori Nogura on his 60th Birthday, Erice, June 2008.
Reference: [37] Zelazko, W.: A theorem on $B_0$ division algebras.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. Zbl 0095.31303, MR 0125901
Reference: [38] Zelazko, W.: A theorem on $B_0$ division algebras.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 373-375. Zbl 0095.31303, MR 0125901
.

Files

Files Size Format View
CzechMathJ_60-2010-1_12.pdf 309.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo