Previous |  Up |  Next

Article

Keywords:
generalized Riemannian space; Kählerian space; generalized Kählerian space of the first kind; equitorsion holomorphically projective mappings; holomorphically projective parameter.
Summary:
In this paper we define generalized Kählerian spaces of the first kind $(G\underset 1K_N)$ given by (2.1)--(2.3). For them we consider hollomorphically projective mappings with invariant complex structure. Also, we consider equitorsion geodesic mapping between these two spaces ($G\underset 1K_N$ and $G\underset 1{\overline K}_N$) and for them we find invariant geometric objects.
References:
[1] Chodorová, M., Mikeš, J.: A note to K-torse forming vector fields on compact manifolds with complex structure. Acta Physica Debrecina 42 (2008), 11-18.
[2] Einstein, A.: The Bianchi identities in the generalized theory of gravitation. Can. J. Math. 2 (1950), 120-128. DOI 10.4153/CJM-1950-011-4 | MR 0034134 | Zbl 0039.38802
[3] Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49 (1916), 769-822. DOI 10.1002/andp.19163540702
[4] Einstein, A.: Relativistic theory of the non-symmetic field. In: The Meaning of Relativity, 5th ed., Appendix II, Vol. 49 Princeton University Press Princeton (1955).
[5] Einstein, A.: Generalization of the relativistic theory of gravitation. Ann. Math. 46 (1945), 578-584. DOI 10.2307/1969197 | MR 0014296 | Zbl 0060.44113
[6] Eisenhart, L. P.: Generalized Riemannian spaces. Proc. Natl. Acad. Sci. 37 (1951), 311-315. DOI 10.1073/pnas.37.5.311 | MR 0043530
[7] Hinterleitner, I., Mikeš, J.: On $F$-planar mappings of spaces with affine connections. Note Mat. 27 (2007), 111-118. MR 2367758
[8] Hinterleitner, I., Mikeš, J., Stránská, J.: Infinitesimal $F$-planar transformations. Russ. Math. 52 (2008), 13-18. DOI 10.3103/S1066369X08040026 | MR 2445169
[9] Jukl, M., Juklová, L., Mikeš, J.: On Generalized Trace Decompositions Problems. Proc. 3rd International Conference dedicated to 85th birthday of Professor Kudrijavcev. (2008), 299-314.
[10] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. 89 (1998), 1334-1353. DOI 10.1007/BF02414875 | MR 1619720
[11] Mikeš, J., Starko, G. A.: $K$-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Suppl. Rend. Circ. Palermo 46 (1997), 123-127. MR 1469028
[12] Minči'c, S. M.: Ricci identities in the space of non-symmetric affine connection. Mat. Ves. 10 (1973), 161-172. MR 0341310
[13] Minči'c, S. M.: New commutation formulas in the non-symmetric affine connection space. Publ. Inst. Math. (N. S) 22 (1977), 189-199. MR 0482552
[14] Minči'c, S. M.: Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connection. Coll. Math. Soc. János Bolyai 31 (1982), 445-460. MR 0706937
[15] Minčić, S. M., Stanković, M. S., Velimirović, Lj. S.: Generalized Kählerian spaces. Filomat 15 (2001), 167-174. MR 2105108
[16] Otsuki, T., Tasiro, Y.: On curves in Kählerian spaces. Math. J. Okayama Univ. 4 (1954), 57-78. MR 0066024
[17] Prvanovi'c, M.: A note on holomorphically projective transformations in Kähler space. Tensor, N.S. 35 (1981), 99-104. MR 0614141
[18] Radulovi'c, Zh.: Holomorphically-projective mappings of parabolically-Kählerian spaces. Math. Montisnigri 8 (1997), 159-184. MR 1623833
[19] Shiha, M.: On the theory of holomorphically projective mappings of parabolically Kählerian spaces. In: Differential Geometry and Its Applications. Proc. 5th International Conference, Opava, August 24-28, 1992 Silesian University Opava (1993), 157-160. MR 1255537 | Zbl 0805.53017
[20] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Nauka Moscow (1979), Russian. MR 0552022 | Zbl 0637.53020
[21] Stanković, M. S., Minčić, S. M., Velimirović, Lj. S.: On equitorsion holomorphically projective mappings of generalized Kählerian spaces. Czech. Math. J. 54(129) (2004), 701-715. DOI 10.1007/s10587-004-6419-3 | MR 2086727
[22] Vavříková, H., Mikeš, J., Pokorná, O., Starko, G.: On fundamental equations of almost geodesic mappings of type $\pi_2(e)$. Russ. Math. 51 (2007), 8-12. DOI 10.3103/S1066369X07010021 | MR 2335593
[23] Yano, K.: Differential Geometry of Complex and Almost Complex Spaces. Pergamon Press New York (1965). MR 0187181
[24] Yano, K.: On complex conformal connections. Kodai Math. Semin. Rep. 26 (1975), 137-151. DOI 10.2996/kmj/1138846996 | MR 0377736 | Zbl 0302.53013
Partner of
EuDML logo