Previous |  Up |  Next

Article

Keywords:
interpolation inequality; inhomogeneous nonlinear Schrödinger equation; harmonic potential; blow-up; global existence; standing waves; strong instability
Summary:
By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential $$ {\rm i}\varphi _t=-\triangle \varphi +|x|^2\varphi -|x|^b|\varphi |^{p-2}\varphi . $$ We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.
References:
[1] Baym, G., Pethick, C. J.: Ground state properties of magnetically trapped Bose-condensed rubidium gas. Phys. Rev. Lett. 76 (1996), 6-9. DOI 10.1103/PhysRevLett.76.6
[2] Benjamin, T. B.: The stability of solitary waves. Proc. Royal Soc. London, Ser. A. 328 (1972), 153-183. MR 0338584
[3] Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéarires. C. R. Acad. Sci. Paris I 293 (1981), 489-492. MR 0646873
[4] Bona, J. L.: On the stability theory of solitary waves. Proc. Royal Soc. London, Ser. A. 344 (1975), 363-374. MR 0386438 | Zbl 0328.76016
[5] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compositio Math. 53 (1984), 259-275. MR 0768824 | Zbl 0563.46024
[6] Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Metodos Matematicos, 22, Rio de Janeiro (1989).
[7] Cazenave, T., Lions, P. L.: Orbital satbility of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85 (1982), 549-561. DOI 10.1007/BF01403504 | MR 0677997
[8] Chen, J., Guo, B.: Strong instability of standing waves for a nonlocal Schrödinger equation. Phys. D 227 (2007), 142-148. DOI 10.1016/j.physd.2007.01.004 | MR 2332502 | Zbl 1116.35111
[9] Chen, J., Guo, B.: Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete Contin. Dynam. Systems 8 (2007), 357-367. DOI 10.3934/dcdsb.2007.8.357 | MR 2317813 | Zbl 1151.35089
[10] Fibich, G., Wang, X. P.: Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearity. Phys. D. 175 (2003), 96-108. DOI 10.1016/S0167-2789(02)00626-7 | MR 1957907
[11] Fukuizumi, R.: Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete Contin. Dyn. Syst. 7 (2001), 525-544. DOI 10.3934/dcds.2001.7.525 | MR 1815766 | Zbl 0992.35094
[12] Fukuizumi, R., Ohta, M.: Stability of standing waves for nonlinear Schrödinger equations with potentials. Differential Integral Equations 16 (2003), 111-128. MR 1948875 | Zbl 1031.35132
[13] Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. J. Math. Kyoto Univ. 45 (2005), 145-158. MR 2138804
[14] Gill, T. S.: Optical guiding of laser beam in nonuniform plasma. Pramana Journal of Physics 55 (2000), 845-852.
[15] Ginibre, J., Velo, G.: On the class of nonlinear Schrödinger equations I, II. J. Funct. Anal. 32 (1979), 1-32, 33-71. DOI 10.1016/0022-1236(79)90076-4 | MR 0533219
[16] Glassey, R. T.: On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 18 (1977), 1794-1797. DOI 10.1063/1.523491 | MR 0460850
[17] Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74 (1987), 160-197. DOI 10.1016/0022-1236(87)90044-9 | MR 0901236 | Zbl 0656.35122
[18] Liu, C. S., Tripathi, V. K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1 (1994), 3100-3103. DOI 10.1063/1.870501
[19] Liu, Y., Wang, X. P., Wang, K.: Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity. Trans. Amer. Math. Soc. 358 (2006), 2105-2122. DOI 10.1090/S0002-9947-05-03763-3 | MR 2197450
[20] Merle, F.: Nonexistence of minimal blow up solutions of equations $iu_t=-\triangle u-K(x) |u|^{4/N}u$ in $\Bbb R^N$. Ann. Inst. H. Poincaré, Phys. Théor. 64 (1996), 33-85. MR 1378233 | Zbl 0846.35060
[21] Yong-Geun, Oh: Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equation with potentials. J. Differential Equations 81 (1989), 255-274. DOI 10.1016/0022-0396(89)90123-X | MR 1016082
[22] Rose, H. A., Weinstein, M. I.: On the bound states of the nonlinear Schrödinger equation with linear potential. Phys. D 30 (1988), 207-218. DOI 10.1016/0167-2789(88)90107-8 | MR 0939275
[23] Rother, W.: Some existence results for the equation $-\triangle u+K(x)u^p=0$. Comm. Partial Differential Equations 15 (1990), 1461-1473. DOI 10.1080/03605309908820733 | MR 1077474
[24] Shatah, J., Strauss, W.: Instability of nonlinear bound states. Comm. Math. Phys. 100 (1985), 173-190. DOI 10.1007/BF01212446 | MR 0804458 | Zbl 0603.35007
[25] Sintzoff, P., Willem, M.: A semilinear elliptic equation on $\Bbb R^N$ with unbounded coefficients. Variational and topological methods in the study of nonlinear phenomena 49 (Pisa 2000) 105-113 Birkhauser, Boston, 2002. MR 1879738
[26] Strauss, W.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), 149-162. DOI 10.1007/BF01626517 | MR 0454365 | Zbl 0356.35028
[27] Tsurumi, T., Waditi, M.: Collapses of wave functions in multidimensional nonlinear Schrödinger equations under harmonic potential. J. Phys. Soc. Japan 66 (1997), 3031-3034. DOI 10.1143/JPSJ.66.3031
[28] Tsurumi, T., Waditi, M.: Instability of the Bose-Einstein condensate under magnetic trap. J. Phys. Soc. Japan 66 (1997), 3035-3039.
[29] Wang, Y.: Strong instability of standing waves for Hartree equation with harmonic potential. Phys. D 237 (2008), 998-1005. DOI 10.1016/j.physd.2007.11.018 | MR 2417084 | Zbl 1143.35372
[30] Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983), 567-576. DOI 10.1007/BF01208265 | MR 0691044 | Zbl 0527.35023
[31] Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser, Boston (1996). MR 1400007 | Zbl 0856.49001
[32] Zhang, J.: Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential. Comm. Partial Differential Equations 30 (2005), 1429-1443. DOI 10.1080/03605300500299539 | MR 2182299
Partner of
EuDML logo