Previous |  Up |  Next

Article

Title: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions (English)
Author: Gonska, Heiner
Author: Păltănea, Radu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 783-799
Summary lang: English
.
Category: math
.
Summary: We introduce and study a one-parameter class of positive linear operators constituting a link between the well-known operators of S. N. Bernstein and their genuine Bernstein-Durrmeyer variants. Several limiting cases are considered including one relating our operators to mappings investigated earlier by Mache and Zhou. A recursion formula for the moments is proved and estimates for simultaneous approximation of derivatives are given. (English)
Keyword: positive linear operator
Keyword: Bernstein-type operator
Keyword: genuine Bernstein-Durrmeyer operator
Keyword: simultaneous approximation
Keyword: degree of approximation
Keyword: moduli of continuity
MSC: 41A10
MSC: 41A17
MSC: 41A25
MSC: 41A28
MSC: 41A36
MSC: 41A60
idZBL: Zbl 1224.41016
idMR: MR2672415
.
Date available: 2010-07-20T17:18:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140604
.
Reference: [1] Berens, H., Xu, Y.: On Bernstein-Durrmeyer polynomials with Jacobi weights.In: Approximation Theory and Functional Analysis Academic Press Boston (1991), 25-46. Zbl 0715.41013, MR 1090548
Reference: [2] Chen, W.: On the modified Bernstein-Durrmeyer operator.Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China (1987).
Reference: [3] Derriennic, M. M.: Sur l'approximation de fonctions intégrables sur $[0,1]$ par des polynômes de Bernstein modifiés.J. Approx. Theory 31 (1981), 325-343 French. MR 0628516, 10.1016/0021-9045(81)90101-5
Reference: [4] Durrmeyer, J. L.: Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments. Thèse de 3ème cycle.Faculté des Sciences Univ. Paris (1967).
Reference: [5] Gavrea, I.: The approximation of the continuous functions by means of some positive operators.Result. Math. 30 (1996), 55-66. MR 1402425, 10.1007/BF03322180
Reference: [6] Gonska, H.: Quantitative Korovkin-type theorems on simultaneous approximation.Math. Z. 186 (1984), 419-433. Zbl 0523.41013, MR 0744832, 10.1007/BF01174895
Reference: [7] Gonska, H. H., Kacsó, D., Raşa, I.: On genuine Bernstein-Durrmeyer operators.Result. Math. 50 (2007), 213-225. MR 2343589, 10.1007/s00025-007-0242-8
Reference: [8] Goodman, T. N. T., Sharma, A.: A modified Bernstein-Schoenberg operator.Proc. Conf. Constructive Theory of Functions, Varna 1987 Bl. Sendov et al. Publ. House Bulg. Acad. Sci. Sofia (1988), 166-173. Zbl 0737.41023, MR 0994834
Reference: [9] Kacsó, D.: Certain Bernstein-Durrmeyer type operators preserving linear functions.Habilitationschrift Universität Duisburg-Essen (2006).
Reference: [10] Lupaş, A.: Die Folge der Betaoperatoren.Dissertation Universität Stuttgart (1972).
Reference: [11] Mache, D. H., Zhou, D. X.: Characterization theorems for the approximation by a family of operators.J. Approx. Theory 84 (1996), 145-161. Zbl 0840.41017, MR 1370596, 10.1006/jath.1996.0012
Reference: [12] Mond, B.: On the degree of approximation by linear positive operators.J. Approx. Theory 18 (1976), 304-306. Zbl 0339.41009, MR 0422965, 10.1016/0021-9045(76)90022-8
Reference: [13] Parvanov, P. E., Popov, B. D.: The limit case of Bernstein's operators with Jacobi weights.Math. Balk. (N.S.) 8 (1994), 165-177. Zbl 0900.41006, MR 1338774
Reference: [14] Pǎltǎnea, R.: Sur un operateur polynômial défini sur l'ensemble des fonctions intégrables.Babeş Bolyai Univ., Fac. Math., Res. Semin. 2 (1983), 101-106 French. MR 0750503
Reference: [15] Pǎltǎnea, R.: Une propriété d'extrémalité des valeurs propres des opérateurs polynômiaux de Durrmeyer généralisés.Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 15 (1986), 57-64 French. MR 0870679
Reference: [16] Pǎltǎnea, R.: Approximation Theory Using Positive Linear Operators.Birkhäuser Boston (2004). MR 2085239
Reference: [17] Pǎltǎnea, R.: A class of Durrmeyer type operators preserving linear functions.Annals of the Tiberiu Popoviciu Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca), vol. 5 (2007), 109-118.
Reference: [18] Sauer, T.: The genuine Bernstein-Durrmeyer operator on a simplex.Result. Math. 26 (1994), 99-130. MR 1290684, 10.1007/BF03322291
Reference: [19] Waldron, S.: A generalised beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights.J. Approx. Theory 122 (2003), 141-150. Zbl 1024.41014, MR 1976131, 10.1016/S0021-9045(03)00041-8
.

Files

Files Size Format View
CzechMathJ_60-2010-3_13.pdf 287.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo