Previous |  Up |  Next

Article

Title: On some cohomological properties of the Lie algebra of Euclidean motions (English)
Author: Bakšová, Marta
Author: Dekrét, Anton
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 4
Year: 2009
Pages: 337-348
Summary lang: English
.
Category: math
.
Summary: The external derivative $d$ on differential manifolds inspires graded operators on complexes of spaces $\Lambda ^rg^\ast $, $\Lambda ^rg^\ast \otimes g$, $\Lambda ^rg^\ast \otimes g^\ast $ stated by $g^\ast $ dual to a Lie algebra $g$. Cohomological properties of these operators are studied in the case of the Lie algebra $g=se( 3 )$ of the Lie group of Euclidean motions. (English)
Keyword: Lie group
Keyword: Lie algebra
Keyword: dual space
Keyword: twist
Keyword: wrench
Keyword: cohomology
MSC: 22E60
MSC: 22E70
MSC: 70B15
idZBL: Zbl 1212.70005
idMR: MR2597229
DOI: 10.21136/MB.2009.140665
.
Date available: 2010-07-20T18:07:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140665
.
Reference: [1] Bakša, J.: Three-parametric robot manipulators with parallel rotational axes.Appl. Math., Praha 52 (2007), 303-319. Zbl 1164.53310, MR 2324729, 10.1007/s10492-007-0016-3
Reference: [2] Chevallier, D. P.: On the foundations of ordinary and generalized rigid body dynamics and the principle of objectivity.Arch. Mech. 56 (2004), 313-353. Zbl 1076.70002, MR 2088029
Reference: [3] Dekrét, A., Bakša, J.: Applications of line objects in robotics.Acta Univ. M. Belii, Ser. Mat. 9 (2001), 29-42. Zbl 1046.70004, MR 1935681
Reference: [4] Fecko, M.: Differential Geometry and Lie Groups for Physicists.Cambridge University Press (2006). Zbl 1121.53001, MR 2260667
Reference: [5] Hao, K.: Dual number method, rank of a screw system and generation of Lie subalgebras.Mech. Mach. Theory 33 (1998), 1063-1084. MR 1653349, 10.1016/S0094-114X(97)00121-3
Reference: [6] Karger, A.: Robot-manipulators as submanifolds.Math. Pannonica 4 (1993), 235-247. Zbl 0793.53011, MR 1258929
Reference: [7] Karger, A.: Classification of three-parametric spatial motions with a transitive group of automorphisms and three-parametric robot manipulators.Acta Appl. Math. 18 (1990), 1-16. Zbl 0699.53013, MR 1047292, 10.1007/BF00822203
Reference: [8] Lerbet, J.: Some explicit relations in kinematics of mechanisms.Mech. Res. Commun. 27 (2000), 621-630. Zbl 0987.70002, MR 1808551, 10.1016/S0093-6413(00)00138-5
Reference: [9] Selig, J.: Geometrical Methods in Robotics.Springer, New York (1996). Zbl 0861.93001, MR 1411680
.

Files

Files Size Format View
MathBohem_134-2009-4_1.pdf 282.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo